所属成套资源:2024年高考数学复习二轮讲义(考前回顾+思想方法+六专题)
专题一 培优点2 隐零点问题--2024年高考数学复习二轮讲义
展开
这是一份专题一 培优点2 隐零点问题--2024年高考数学复习二轮讲义,共3页。
考点一 不含参函数的隐零点问题
例1 (2023·咸阳模拟)已知f(x)=(x-1)2ex-eq \f(a,3)x3+ax(x>0)(a∈R).
(1)讨论函数f(x)的单调性;
(2)当a=0时,判定函数g(x)=f(x)+ln x-eq \f(1,2)x2零点的个数,并说明理由.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 已知不含参函数f(x),导函数方程f′(x)=0的根存在,却无法求出,利用零点存在定理,判断零点存在,设方程f′(x)=0的根为x0,则①有关系式f′(x0)=0成立,②注意确定x0的合适范围.
跟踪演练1 (2023·天津模拟)已知函数f(x)=ln x-ax+1,g(x)=x(ex-x).
(1)若直线y=2x与函数f(x)的图象相切,求实数a的值;
(2)当a=-1时,求证:f(x)≤g(x)+x2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考点二 含参函数的隐零点问题
例2 (2023·包头模拟)已知函数f(x)=aex-ln(x+1)-1.
(1)当a=e时,求曲线y=f(x)在点(0,f(0))处的切线与两坐标轴所围成的三角形的面积;
(2)证明:当a>1时,f(x)没有零点.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 已知含参函数f(x,a),其中a为参数,导函数方程f′(x,a)=0的根存在,却无法求出,设方程f′(x)=0的根为x0,则①有关系式f′(x0)=0成立,该关系式给出了x0,a的关系;②注意确定x0的合适范围,往往和a的范围有关.
跟踪演练2 (2023·石家庄模拟)已知函数f(x)=x-ln x-2.
(1)讨论函数f(x)的单调性;
(2)若对任意的x∈(1,+∞),都有xln x+x>k(x-1)成立,求整数k的最大值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
相关试卷
这是一份专题一 培优点2 隐零点问题2024年高考数学,共1页。
这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题一 培优点2 隐零点问题10,共3页。
这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题一 培优点2 隐零点问题5,共1页。