所属成套资源:(备战2024高考数学)高考数学二轮复习之回归教材
(备战24高考数学)6.(回归教材)聚焦新教材中的体积计算
展开6.聚焦新教材中体积计算的五种方法方法1.公式法例1.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A. B. C. D.例2.(2020全国1卷)如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥P−ABC的体积.解析:(1)连接,为圆锥顶点,为底面圆心,平面,在上,,是圆内接正三角形,,≌,,即,平面平面,平面平面;(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,,解得,,在等腰直角三角形中,,在中,,三棱锥的体积为. 方法2.等积转化1.等体积转化法一般情况下是三棱锥才有的特性。2.尽可能寻找在表面的三个点,通过三棱锥“换底”求解三棱锥的体积。转化的目的是为了找到易于计算的:“好底”与“好高”.例3.如图,在棱长为2的正方体中,E是侧面内的一个动点,则三棱锥的体积为_________. 例4.如图所示,在正方体中,为中点. 若正方体棱长为2,求三棱锥的体积.三、多面体割,补法求体积1.分割法:把不规则的几何体分割成规则的几何体,当规则的几何体用公式不易求出时,再将其分割没转化成比较好求体积的几何体;大多数情况下,可以把不规则几何体分割为三棱锥+四棱锥,从四棱锥底面对角线或者几何体表面四边形对角线处寻找分割的“刀口”2、补形法:把不规则的几何体补成规则的几何体,便于计算;常见的补形有:(1)将正四面体补形成正方体;(2)将等腰四面体(对棱相等)补形成长方体;(3)将三条棱两两相互垂直且相等的三棱锥补成正方体;(4)将台体补成锥体等等。例5.如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )A. B.C. D.解析:设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.例6.小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度).解析:(2)分别取中点,由(1)知,且,同理有,,,,由平面知识可知,,,,所以该几何体的体积等于长方体的体积加上四棱锥体积的倍.因为,,点到平面的距离即为点到直线的距离,,所以该几何体的体积.,四、两部分体积比例法(转移法)把所求的几何体转化为与它等底、等高的几何体的体积,利用好“同底等高”和“同底比例高”,本质就是寻找合适的底面和平行高转化.例7.如图,在四棱锥中,底面为平行四边形, , ,且底面.(1)证明: 平面;(2)若为的中点,求三棱锥的体积. 解析:(1)证明:∵,∴,∵,∴.又∵底面,∴.∵,∴平面.(2)三棱锥的体积与三棱锥的体积相等,而.所以三棱锥的体积.例8.如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.解析:(2)连结EO.由(1)及题设知∠ADC=90°,所以DO=AO.在中,.又AB=BD,所以,故∠DOB=90°.由题设知为直角三角形,所以.又是正三角形,且AB=BD,所以.故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,即四面体ABCE与四面体ACDE的体积之比为1:1.坐标方法例9.如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.解析:建立如图所示的空间直角坐标系,设,所以,,,,.所以,,.所以.所以,即. 由(1)可知.于是,故.因为,所以,即.故四棱锥的体积.