|试卷下载
终身会员
搜索
    上传资料 赚现金
    专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专练05 解三角形“热考”十点【原卷版】.docx
    • 解析
      专练05 解三角形“热考”十点【解析版】.docx
    专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)01
    专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)02
    专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)03
    专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)01
    专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)02
    专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)03
    还剩6页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)

    展开
    这是一份专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专练05解三角形“热考”十点原卷版docx、专练05解三角形“热考”十点解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。


    热点一
    三角形中边角计算
    1.(2023·北京·统考高考真题)在中,,则( )
    A.B.C.D.
    【答案】B
    【分析】利用正弦定理的边角变换与余弦定理即可得解.
    【详解】因为,
    所以由正弦定理得,即,
    则,故,
    又,所以.
    故选:B.
    2.(2020·全国·统考高考真题)在△ABC中,csC=,AC=4,BC=3,则csB=( )
    A.B.C.D.
    【答案】A
    【分析】根据已知条件结合余弦定理求得,再根据,即可求得答案.
    【详解】在中,,,
    根据余弦定理:
    可得 ,即

    故.
    故选:A.
    3.(2021·全国·高考真题)在中,已知,,,则( )
    A.1B.C.D.3
    【答案】D
    【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.
    【详解】设,
    结合余弦定理:可得:,
    即:,解得:(舍去),
    故.
    故选:D.
    4.(2020·山东·统考高考真题)在中,内角,,的对边分别是,,,若,且 ,则等于( )
    A.3B.C.3或D.-3或
    【答案】A
    【分析】利用余弦定理求出,并进一步判断,由正弦定理可得,最后利用两角和的正切公式,即可得到答案;
    【详解】,,


    ,,


    故选:A.
    5.(2021·浙江·统考高考真题)在中,,M是的中点,,则 , .
    【答案】
    【分析】由题意结合余弦定理可得,进而可得,再由余弦定理可得.
    【详解】由题意作出图形,如图,
    在中,由余弦定理得,
    即,解得(负值舍去),
    所以,
    在中,由余弦定理得,
    所以;
    在中,由余弦定理得.
    故答案为:;.
    【规律方法】
    1.已知任意两角和一边,解三角形的步骤:
    ①求角:根据三角形内角和定理求出第三个角;
    ②求边:根据正弦定理,求另外的两边.
    已知内角不是特殊角时,往往先求出其正弦值,再根据以上步骤求解.
    已知三边解三角形的方法
    (1)先利用余弦定理求出一个角的余弦,从而求出第一个角;再利用余弦定理或由求得的第一个角,利用正弦定理求出第二个角;最后利用三角形的内角和定理求出第三个角.
    (2)利用余弦定理求三角的余弦,进而求得三个角.
    热点二
    判断三角形的形状
    6.在△ABC中,若b2sin2C+c2sin2B=2bccsBcsC,试判断△ABC的形状.
    【答案】直角三角形.
    【解析】解法一:∵b2sin2C+c2sin2B=2bccsBcsC,
    ∴利用正弦定理可得
    sin2Bsin2C+sin2Csin2B=2sinB·sinC·csB·csC,
    ∵sinBsinC≠0,∴sinB·sinC=csBcsC,∴cs(B+C)=0,∴csA=0,
    ∵0解法二:已知等式可化为b2-b2cs2C+c2-c2·cs2B=2bccsBcsC,
    由余弦定理可得b2+c2-b2·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a2+b2-c2,2ab)))2-c2·(eq \f(a2+c2-b2,2ac))2
    =2bc·eq \f(a2+b2-c2,2ab)·eq \f(a2+c2-b2,2ac)∴b2+c2=a2,∴△ABC为直角三角形.
    解法三:已知等式变形为b2(1-cs2C)+c2(1-cs2B)=2bccsB·csC,
    ∴b2+c2=b2cs2C+c2cs2B+2bccsB·csC,
    ∵b2cs2C+c2cs2B+2bccsBcsC=(bcsC+ccsB)2=a2,
    ∴b2+c2=a2,∴△ABC为直角三角形.
    7.(2020·全国·统考高考真题)△ABC的内角A,B,C的对边分别为a,b,c,已知.
    (1)求A;
    (2)若,证明:△ABC是直角三角形.
    【答案】(1);(2)证明见解析
    【分析】(1)根据诱导公式和同角三角函数平方关系,可化为,即可解出;
    (2)根据余弦定理可得,将代入可找到关系,
    再根据勾股定理或正弦定理即可证出.
    【详解】(1)因为,所以,
    即,
    解得,又,
    所以;
    (2)因为,所以,
    即①,
    又②, 将②代入①得,,
    即,而,解得,
    所以,
    故,
    即是直角三角形.
    【规律方法】
    利用正弦定理判断三角形形状的方法:
    (1)化边为角.将题目中的所有条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.
    (2)化角为边.根据题目中的所有条件,利用正弦定理化角为边,再利用代数恒等变换得到边的关系(如),进而确定三角形的形状.
    2.判断三角形的形状时,经常用到以下结论
    ①△ABC为直角三角形⇔a2=b2+c2或c2=a2+b2或b2=a2+c2.
    ②△ABC为锐角三角形⇔a2+b2>c2且b2+c2>a2且c2+a2>b2.
    ③△ABC为钝角三角形⇔a2+b2④若sin 2A=sin 2B,则A=B或A+B=eq \f(π,2).
    3.常见误区:易忽略三角形中的隐含条件.
    热点三
    三角形解的个数问题
    8. (2016·全国卷Ⅰ文,4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=eq \r(5),c=2,csA=eq \f(2,3),则b=( )
    A.eq \r(2) B.eq \r(3)
    C.2D.3
    【答案】D
    【解析】由余弦定理,得4+b2-2×2bcsA=5.整理得3b2-8b-3=0,解得b=3或b=-eq \f(1,3)(舍去),故选D.
    2.在△ABC中,已知sinC=eq \f(1,2),a=2eq \r(3),b=2,求边c.
    【解析】∵sinC=eq \f(1,2),且0∴C=eq \f(π,6)或eq \f(5π,6).
    当C=eq \f(π,6)时,csC=eq \f(\r(3),2),
    此时,c2=a2+b2-2abcsC=4,即c=2.
    当C=eq \f(5π,6)时,csC=-eq \f(\r(3),2),
    此时,c2=a2+b2-2abcsC=28,即c=2eq \r(7).
    9.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)在①;②;③这三个条件中任选一个,补充在下面问题中并作答.
    问题:在中,角所对的边分别为,且__________.
    (1)求角的大小;
    (2)已知,且角有两解,求的范围.
    【答案】(1)答案见解析
    (2)
    【分析】(1)若选①,由两角和的正切公式化简即可求出求角的大小;若选②,利用正弦定理统一为角的三角函数,再由两角和的正弦公式即可求解;若选③,由余弦定理代入化简即可得出答案.
    (2)将代入正弦定理可得,要使角有两解,即,解不等式即可得出答案.
    【详解】(1)若选①:整理得,因为,
    所以,因为,所以;
    若选②:因为,
    由正弦定理得,
    所以,所以,因为,所以;
    若选③:由正弦定理整理得,所以,
    即,因为,所以;
    (2)将代入正弦定理,得,所以,
    因为,角的解有两个,所以角的解也有两个,所以,
    即,又,所以,解得.
    【方法技巧】
    三角形解的个数的判断
    在△ABC中,已知a,b和A,利用正弦定理解三角形时,会出现解不确定的情况,一般可根据三角形中“大边对大角和三角形内角和定理”来取舍.具体解的情况如下表:
    上表中若A为锐角,则当a热点四
    解三角形与平面向量的交汇
    10.(2023·全国·统考高考真题)正方形的边长是2,是的中点,则( )
    A.B.3C.D.5
    【答案】B
    【分析】方法一:以为基底向量表示,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求,进而根据数量积的定义运算求解.
    【详解】方法一:以为基底向量,可知,
    则,
    所以;
    方法二:如图,以为坐标原点建立平面直角坐标系,
    则,可得,
    所以;
    方法三:由题意可得:,
    在中,由余弦定理可得,
    所以.
    故选:B.
    11.(2023·贵州毕节·统考模拟预测)已知点G为三角形ABC的重心,且,当取最大值时,( )
    A.B.C.D.
    【答案】A
    【分析】由题设可得,结合,及余弦定理可得,根据基本不等式即可求解.
    【详解】由题意,所以,
    即,所以,所以,
    又,,
    则,
    所以,即,
    由,,,
    所以,
    所以,当且仅当时等号成立,
    又在上单调递减,,
    所以当取最大值时,.
    12.【多选题】(2023·浙江·二模)在中,,,则( )
    A.B.C.D.
    【答案】BD
    【分析】根据条件,结合余弦定理求得,再建立不等关系,判断选项.
    【详解】设,,,,
    由条件可知,,
    中,,
    中,

    所以,
    ,得,即,故B正确;

    所以.
    故选:BD
    【点评】
    1.交汇考向主要有:(1)向量坐标运算条件下解三角形问题;(2)三角形中向量运算问题;(3)共线向量条件下解三角形问题;(4)向量的模与解三角形问题.
    2.解答的总体思路可归结为三个环节:(1)根据向量运算的定义、法则、运算律等,加以计算;(2)应用三角公式,进行变形进而完成化简;(3)应用正弦定理、余弦定理、三角形面积公式等,实施边角转化.就整体而言,正确向量运算、恒等变形是基础,恰当的边角转化是关键,考查的核心是解三角形、三角问题,向量运算是工具.应该注意的是,向量运算条件的给出,也可能是向量平行、垂直,需根据相关条件加以转化.
    热点五
    解三角形与解析几何交汇问题
    13.(2021·全国·统考高考真题)已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )
    A.B.C.D.
    【答案】A
    【分析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.
    【详解】因为,由双曲线的定义可得,
    所以,;
    因为,由余弦定理可得,
    整理可得,所以,即.
    故选:A
    【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.
    14.(2023·全国·高三专题练习)已知椭圆,为两个焦点,O为原点,P为椭圆上一点,,则( )
    A.B.C.D.
    【答案】B
    【分析】根据椭圆的定义结合余弦定理求出的值,利用,根据向量模的计算即可求得答案.
    【详解】由题意椭圆,为两个焦点,可得,

    则①,即,
    由余弦定理得,
    ,故,②
    联立①②,解得:,
    而,所以,
    即,
    故选:B
    【点睛】方法点睛:本题综合考查了椭圆和向量知识的结合,解答时要注意到O为的中点,从而可以利用向量知识求解.
    15.(2023·湖北武汉·统考模拟预测)已知抛物线的焦点为,准线与轴的交点为,过点的直线与抛物线交于,两点,若,则 .
    【答案】8
    【分析】先设出直线的方程,联立抛物线方程,得到两根之和,两根之积,表达出,,再由正弦定理得到,得到,代入两根之和,两根之积,列出方程,求出,进而求出,.
    【详解】由题意得,,当直线的斜率为0时,与抛物线只有1个交点,不合要求,
    故设直线的方程为,不妨设,
    联立,可得,易得,
    设,则,
    则,
    则,

    由正弦定理得,,
    因为,,
    所以,,即,
    又由焦半径公式可知,
    则,即,
    即,解得,
    则,解得,
    故,
    当时,同理可得到.

    故答案为:8
    【点睛】方法点睛:解三角形中,当条件中有角平分线时,可利用正弦定理得到角平分线的性质,将角的关系转化为边的比例关系,再进行求解.
    【点评】
    1.与椭圆、双曲线的定义及几何性质相结合,在“焦点三角形”中,综合应用定义、正弦定理或余弦定理,确定几何量或几何量之间的关系,解决离心率(范围)计算问题,这类问题多以客观题出现;
    2.直线与圆锥曲线位置关系问题中,通过交点等构造或产生三角形,计算三角形面积(最值)、线段长度等,这类问题多在主观题出现,解题过程往往通过直线与圆锥曲线方程联立方程组,应用判别式、一元二次方程根与系数的关系、弦长公式、正弦定理、余弦定理等.
    热点六
    解三角形与立体几何交汇问题
    16.(2023·全国·统考高考真题)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
    A.B.C.D.
    【答案】C
    【分析】法一:利用全等三角形的证明方法依次证得,,从而得到,再在中利用余弦定理求得,从而求得,由此在中利用余弦定理与三角形面积公式即可得解;
    法二:先在中利用余弦定理求得,,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得,由此在中利用余弦定理与三角形面积公式即可得解.
    【详解】法一:
    连结交于,连结,则为的中点,如图,
    因为底面为正方形,,所以,则,
    又,,所以,则,
    又,,所以,则,
    在中,,
    则由余弦定理可得,
    故,则,
    故在中,,
    所以,
    又,所以,
    所以的面积为.
    法二:
    连结交于,连结,则为的中点,如图,
    因为底面为正方形,,所以,
    在中,,
    则由余弦定理可得,故,
    所以,则,
    不妨记,
    因为,所以,
    即,
    则,整理得①,
    又在中,,即,则②,
    两式相加得,故,
    故在中,,
    所以,
    又,所以,
    所以的面积为.
    故选:C.
    17.(2023·全国·统考高考真题)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
    A.B.C.D.
    【答案】C
    【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.
    【详解】取的中点,连接,因为是等腰直角三角形,且为斜边,则有,
    又是等边三角形,则,从而为二面角的平面角,即,

    显然平面,于是平面,又平面,
    因此平面平面,显然平面平面,
    直线平面,则直线在平面内的射影为直线,
    从而为直线与平面所成的角,令,则,在中,由余弦定理得:

    由正弦定理得,即,
    显然是锐角,,
    所以直线与平面所成的角的正切为.
    故选:C
    18.(2023·河南·校联考模拟预测)点是圆柱上底面圆周上一动点,是圆柱下底面圆的内接三角形,已知在中,内角、、的对边分别为、、,若,,三棱锥的体积最大值为,则该三棱锥外接球的表面积为( )
    A.B.C.D.
    【答案】B
    【分析】利用余弦定理结合基本不等式可求得面积的最大值,利用正弦定理可求得圆柱底面圆半径,利用锥体体积公式可求得圆柱的高,进而可求得该三棱锥外接球的半径,结合球体表面积公式可求得结果.
    【详解】在中,由余弦定理可得,
    即,当且仅当时,等号成立,
    所以,,
    设圆柱的高为,则,

    因为三棱锥的体积的最大值为,则,所以,,
    圆柱底面圆半径,
    设三棱锥的外接球的半径为,则该三棱锥的外接球和圆柱的外接球为同一个球,
    则,因此,三棱锥外接球的表面积为.
    故选:B.
    【点评】
    与立体几何的交汇问题,往往是利用几何体中存在的三角形,应用正弦定理或余弦定理,确定解题所需要的几何量,完成角的(函数值)的计算、面积计算等,有时与数学文化相结合,解决古典书籍中的问题,或与时俱进,解决现实生活中的立体几何问题,善于发现相关三角形或做辅助线构造三角形,是解题的重要基础.
    热点七
    正弦定理、余弦定理应用于平面几何问题
    19.(2023·全国·统考高考真题)在中,,的角平分线交BC于D,则 .
    【答案】
    【分析】方法一:利用余弦定理求出,再根据等面积法求出;
    方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.
    【详解】
    如图所示:记,
    方法一:由余弦定理可得,,
    因为,解得:,
    由可得,

    解得:.
    故答案为:.
    方法二:由余弦定理可得,,因为,解得:,
    由正弦定理可得,,解得:,,
    因为,所以,,
    又,所以,即.
    故答案为:.
    【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.
    20.(2020·江苏·统考高考真题)在△ABC中,角A,B,C的对边分别为a,b,c,已知.
    (1)求的值;
    (2)在边BC上取一点D,使得,求的值.
    【答案】(1);(2).
    【分析】(1)方法一:利用余弦定理求得,利用正弦定理求得.
    (2)方法一:根据的值,求得的值,由(1)求得的值,从而求得的值,进而求得的值.
    【详解】(1)[方法一]:正余弦定理综合法
    由余弦定理得,所以.
    由正弦定理得.
    [方法二]【最优解】:几何法
    过点A作,垂足为E.在中,由,可得,又,所以.
    在中,,因此.
    (2)[方法一]:两角和的正弦公式法
    由于,,所以.
    由于,所以,所以.
    所以
    .
    由于,所以.
    所以.
    [方法二]【最优解】:几何法+两角差的正切公式法
    在(1)的方法二的图中,由,可得,从而.
    又由(1)可得,所以.
    [方法三]:几何法+正弦定理法
    在(1)的方法二中可得.
    在中,,
    所以.
    在中,由正弦定理可得,
    由此可得.
    [方法四]:构造直角三角形法
    如图,作,垂足为E,作,垂足为点G.
    在(1)的方法二中可得.
    由,可得.
    在中,.
    由(1)知,所以在中,,从而.
    在中,.
    所以.
    【整体点评】(1)方法一:使用余弦定理求得,然后使用正弦定理求得;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有的直角三角形,进而求解,也是很优美的方法.
    【点评】
    解三角形应用于平面几何问题的基本思路
    (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;
    (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.
    (3)特别提醒:做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.
    热点八
    三角形周长问题
    21.(2022·全国·统考高考真题)记的内角的对边分别为,已知.
    (1)证明:;
    (2)若,求的周长.
    【答案】(1)见解析
    (2)14
    【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;
    (2)根据(1)的结论结合余弦定理求出,从而可求得,即可得解.
    【详解】(1)证明:因为,
    所以,
    所以,
    即,
    所以;
    (2)解:因为,
    由(1)得,
    由余弦定理可得,
    则,
    所以,
    故,
    所以,
    所以的周长为.
    22.(2022·北京·统考高考真题)在中,.
    (1)求;
    (2)若,且的面积为,求的周长.
    【答案】(1)
    (2)
    【分析】(1)利用二倍角的正弦公式化简可得的值,结合角的取值范围可求得角的值;
    (2)利用三角形的面积公式可求得的值,由余弦定理可求得的值,即可求得的周长.
    【详解】(1)解:因为,则,由已知可得,
    可得,因此,.
    (2)解:由三角形的面积公式可得,解得.
    由余弦定理可得,,
    所以,的周长为.
    热点九
    三角形面积问题
    23.(2023·全国·统考高考真题)在中,已知,,.
    (1)求;
    (2)若D为BC上一点,且,求的面积.
    【答案】(1);
    (2).
    【分析】(1)首先由余弦定理求得边长的值为,然后由余弦定理可得,最后由同角三角函数基本关系可得;
    (2)由题意可得,则,据此即可求得的面积.
    【详解】(1)由余弦定理可得:

    则,,
    .
    (2)由三角形面积公式可得,
    则.
    24.(2022·浙江·统考高考真题)在中,角A,B,C所对的边分别为a,b,c.已知.
    (1)求的值;
    (2)若,求的面积.
    【答案】(1);
    (2).
    【分析】(1)先由平方关系求出,再根据正弦定理即可解出;
    (2)根据余弦定理的推论以及可解出,即可由三角形面积公式求出面积.
    【详解】(1)由于, ,则.因为,
    由正弦定理知,则.
    (2)因为,由余弦定理,得,
    即,解得,而,,
    所以的面积.
    【点评】
    三角形面积有关的问题解答步骤:
    化简转化:根据条件,利用三角恒等变换公式,化简已知条件等式,再利用正弦定理、余弦定理化边、化角;
    选择公式:多选择S△ABC=eq \f(1,2)absin C=eq \f(1,2)bcsin A=eq \f(1,2)acsin B;
    求值(最值).
    热点十
    三角形范围(最值)问题
    25.(2022·全国·统考高考真题)记的内角A,B,C的对边分别为a,b,c,已知.
    (1)若,求B;
    (2)求的最小值.
    【答案】(1);
    (2).
    【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;
    (2)由(1)知,,,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出.
    【详解】(1)因为,即,
    而,所以;
    (2)由(1)知,,所以,
    而,
    所以,即有,所以
    所以

    当且仅当时取等号,所以的最小值为.
    26.(2020·浙江·统考高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.
    (I)求角B的大小;
    (II)求csA+csB+csC的取值范围.
    【答案】(I);(II)
    【分析】(I)方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B的大小;
    (II)方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A的三角函数式,然后由三角形为锐角三角形确定角A的取值范围,最后结合三角函数的性质即可求得的取值范围.
    【详解】(I)
    [方法一]:余弦定理
    由,得,即.
    结合余弦定,
    ∴,
    即,
    即,
    即,
    即,
    ∵为锐角三角形,∴,
    ∴,
    所以,
    又B为的一个内角,故.
    [方法二]【最优解】:正弦定理边化角
    由,结合正弦定理可得:
    为锐角三角形,故.
    (II) [方法一]:余弦定理基本不等式
    因为,并利用余弦定理整理得,
    即.
    结合,得.
    由临界状态(不妨取)可知.
    而为锐角三角形,所以.
    由余弦定理得,
    ,代入化简得
    故的取值范围是.
    [方法二]【最优解】:恒等变换三角函数性质
    结合(1)的结论有:
    .
    由可得:,,
    则,.
    即的取值范围是.
    【整体点评】(I)的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II)的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.
    27.(2020·全国·统考高考真题)中,sin2A-sin2B-sin2C=sinBsinC.
    (1)求A;
    (2)若BC=3,求周长的最大值.
    【思路引导】(1)第一步,应用正弦定理角化边;第二步,应用余弦定理求,进而求得;
    (2)重点分析方法一:由于已知,因此,主要任务是确定的最值.第一步,应用余弦定理并化简可得;第二步,利用基本不等式求得的最大值,进而得到结果.
    【解析】
    (1)由正弦定理可得:,

    ,.
    (2)[方法一]【最优解】:余弦+不等式
    由余弦定理得:,
    即.
    (当且仅当时取等号),

    解得:(当且仅当时取等号),
    周长,周长的最大值为.
    [方法二]:正弦化角(通性通法)
    设,则,根据正弦定理可知,所以,当且仅当,即时,等号成立.此时周长的最大值为.
    [方法三]:余弦与三角换元结合
    在中,角A,B,C所对的边分别为a,b,c.由余弦定理得,即.令,得,易知当时,,
    所以周长的最大值为.
    【交汇点阐释】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理的应用、三角形周长最大值的求解问题,这里提供了三种解法,各具特点.其中,方法一:求解周长最大值的关键是能够在应用余弦定理得到的等式中,结合基本不等式构造不等关系求得最值,易错点是“=”成立的条件是否具备. 方法二:采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决,这种解法易错点是确定角的范围. 方法三:将化为.巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题,难点在于等式的转化.总之,恰当的边角转化、恒等变形是关键,也是考查的核心.根据等式的结构,联想应用基本不等式是难点.
    28.(2022秋·河南郑州·高三郑州外国语学校校考阶段练习)在①;②;③向量与平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知内角A,B,C的对边分别为a,b,c,且满足_______.
    (1)求角C;
    (2)若为锐角三角形,且,求面积的取值范围.
    【答案】(1);
    (2).
    【分析】(1)先选择条件,再根据三角形的正、余弦定理,求出角C;
    (2)根据题(1)在结合余弦定理以及三角形的三边关系,得出b的范围,进而求出面积的取值范围.
    【详解】(1)若选择①:由①及正弦定理可得,即,
    由余弦定理得,又,
    ∴.
    若选择②:由②及正弦定理得, 所以,
    即,由,
    ∴,又,
    故.
    若选择③:由③可得,∴,
    ∴,又,.
    (2)由已知及余弦定理可得,
    由为锐角三角形可得且,
    解得,
    所以面积.
    【点评】
    1.边角、周长问题:利用正弦定理余弦定理灵活的进行边角转化,如果转化成 “边”的表达式,应用基本不等式求最值(范围);如果转化成三角函数表达式,应用二次函数的性质或应用三角函数的性质求解.
    2.面积问题求解基本步骤:一是应用正弦定理、余弦定理实施边角转化;二是确定三角形面积的表达式;三是应用均值不等式或三角函数性质求其最值(范围).A为锐角
    A为钝角或直角
    图形
    关系式
    a=bsin A
    bsin Aa≥b
    a>b
    解的个数
    一解
    两解
    一解
    一解
    相关试卷

    专练08 解析几何的二十个考查热点-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专练08 解析几何的二十个考查热点-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专练08解析几何的二十个考查热点原卷版docx、专练08解析几何的二十个考查热点解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    专练06 数列考查的九个热点-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专练06 数列考查的九个热点-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专练06数列考查的九个热点原卷版docx、专练06数列考查的九个热点解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    专练05 解三角形“热考”十点-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专练05 解三角形“热考”十点-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专练05解三角形“热考”十点原卷版docx、专练05解三角形“热考”十点解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专练05 解三角形“热考”十点-2024年高考数学大一轮复习核心考点精讲精练(新高考专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map