所属成套资源:【高考模拟】2024届新高考数学复习系列模拟试卷(新高考数学)
- 2024年高考数学重难点突破专题八 立体几何 第二十二讲 空间几何体的三视图、表面积和体积答案 (2)59 试卷 0 次下载
- 2024年高考数学重难点突破专题八 立体几何 第二十二讲 空间几何体的三视图、表面积和体积答案60 试卷 0 次下载
- 2024年高考数学重难点突破专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系62 试卷 0 次下载
- 2024年高考数学重难点突破专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系答案 (2)63 试卷 0 次下载
- 2024年高考数学重难点突破专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系答案64 试卷 0 次下载
2024年高考数学重难点突破专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系 (2)61
展开
这是一份2024年高考数学重难点突破专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系 (2)61,共15页。
2019年
1.(2019全国Ⅲ理8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则
A.BM=EN,且直线BM、EN 是相交直线
B.BM≠EN,且直线BM,EN 是相交直线
C.BM=EN,且直线BM、EN 是异面直线
D.BM≠EN,且直线BM,EN 是异面直线
2.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行
C.α,β平行于同一条直线 D.α,β垂直于同一平面
3.(2019江苏16)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.
求证:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
4.(2019北京理12)已知l,m是平面a外的两条不同直线.给出下列三个论断:
①; ②; ③
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: ______.
2010-2018年
一、选择题
1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面所成的角相等,则截此正方体所得截面面积的最大值为
A. B. C. D.
2.(2018全国卷Ⅱ)在长方体中,,,则异面直线与所成角的余弦值为
A.B.C. D.
3.(2018浙江)已知平面,直线,满足,,则“∥”是“∥”的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.(2018浙江)已知四棱锥的底面是正方形,侧棱长均相等,是线段上的点(不含端点),设与所成的角为,与平面所成的角为,二面角的平面角为,则
A. B. C. D.
5.(2017新课标Ⅱ)已知直三棱柱 QUOTE 中,,,
,则异面直线与所成角的余弦值为
A. B. C. D.
6.(2017浙江)如图,已知正四面体(所有棱长均相等的三棱锥),,,分别为,,上的点,,,分别记二面角,,的平面角为,,,则
A.
相关试卷
这是一份2024年高考数学重难点突破专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系62,共24页。
这是一份2024年高考数学重难点突破专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系答案 (2)63,共30页。试卷主要包含了解析 如图所示,联结,,解析,证明等内容,欢迎下载使用。
这是一份2024年高考数学重难点突破专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系答案64,共40页。试卷主要包含了解析 如图所示,联结,,解析 连结,解析,证明,解析因为平面ABCD,且平面,,解析 连接,易知,等内容,欢迎下载使用。