所属成套资源:【高考模拟】2024届新高考数学复习系列模拟试卷(新高考数学)
备战2024年高考数学二轮专题复习56个高频考点专练47 抛物线
展开
这是一份备战2024年高考数学二轮专题复习56个高频考点专练47 抛物线,共3页。
一、选择题
1.抛物线y= eq \f(1,4) x2的焦点到其准线的距离为( )
A.1 B.2
C. eq \f(1,2) D. eq \f(1,8)
2.已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点坐标为( )
A.(-1,0) B.(1,0)
C.(0,-1) D.(0,1)
3.动点M到点F(2,1)的距离和到直线l:3x+4y-10=0的距离相等,则动点M的轨迹为( )
A.抛物线 B.直线
C.线段 D.射线
4.若抛物线y2=2px的焦点与双曲线 eq \f(x2,3) -y2=1的右焦点重合,则p的值为( )
A.-4 B.4
C.-2 D.2
5.[2022·全国乙卷(文),6] 设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=( )
A.2 B.2 eq \r(2)
C.3 D.3 eq \r(2)
6.若抛物线y2=2px(p>0)的焦点是椭圆 eq \f(x2,3p) + eq \f(y2,p) =1的一个焦点,则p=( )
A.2 B.3
C.4 D.8
7.
如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=4,则抛物线的方程为( )
A.y2=8x B.y2=4x
C.y2=2x D.y2=x
8.设坐标原点为O,抛物线y2=2x与过焦点的直线交于A,B两点,则 eq \(OA,\s\up6(→)) · eq \(OB,\s\up6(→)) 等于( )
A. eq \f(3,4) B.- eq \f(3,4)
C.3 D.-3
9.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点坐标为(3,y0)时,△AEF为正三角形,则此时△OAB的面积为( )
A. eq \f(4\r(3),3) B. eq \r(3)
C. eq \f(2\r(3),3) D. eq \f(\r(3),3)
二、填空题
10.[2021·新高考Ⅰ卷]已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP,若|FQ|=6,则C的准线方程为________.
11.[2023·全国乙卷(理)]已知点A eq \b\lc\(\rc\)(\a\vs4\al\c1(1,\r(5))) 在抛物线C:y2=2px上,则A到C的准线的距离为________.
12.已知直线y=kx+2与抛物线y2=8x有且只有一个公共点,则k的值为________.
[能力提升]
13.(多选)[2023·新课标Ⅱ卷]设O为坐标原点,直线y=- eq \r(3) (x-1)过抛物线C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则( )
A.p=2
B.|MN|= eq \f(8,3)
C.以MN为直径的圆与l相切
D.△OMN为等腰三角形
14.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线y2=4x的焦点为F,一条平行于x轴的光线从点M(3,1)射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则△ABM的周长为( )
A. eq \f(71,12) + eq \r(26) B.9+ eq \r(26)
C.9+ eq \r(10) D. eq \f(83,12) + eq \r(26)
15.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,抛物线C有一点P,过点P作PM⊥l,垂足为M,若等边△PMF的面积为4 eq \r(3) ,则p=________.
过抛物线y2=2px(p>0)的焦点F作倾斜角为60°的直线,与抛物线分别交于A,B两点(点A在x轴上方),则 eq \f(|AF|,|BF|) =________.
相关试卷
这是一份备战2024年高考数学二轮专题复习56个高频考点专练46 双曲线,共3页。
这是一份备战2024年高考数学二轮专题复习56个高频考点专练45 椭圆,共3页。
这是一份备战2024年高考数学二轮专题复习56个高频考点专练43 圆的方程,共3页。