重庆市第二外国语学校2023-2024学年九上数学期末联考试题含答案
展开
这是一份重庆市第二外国语学校2023-2024学年九上数学期末联考试题含答案,共8页。试卷主要包含了如图,中,,若,,则边的长是,下列命题中,真命题是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,将绕点按逆时针方向旋转后得到,若,则的度数为( )
A.B.C.D.
2.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30°B.40°C.50°D.60°
3.如图,AB是⊙O的直径,∠AOC=130°,则∠D等于()
A.25°B.35°C.50°D.65°
4.顺次连接四边形ABCD各边的中点,所得四边形是( )
A.平行四边形
B.对角线互相垂直的四边形
C.矩形
D.菱形
5.如图,中,,若,,则边的长是( )
A.2B.4C.6D.8
6.若点(2, 3)在反比例函数y=的图象上,那么下列各点在此图象上的是( )
A.(-2,3)B.(1,5)C.(1, 6)D.(1, -6)
7.下列命题中,真命题是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形不一定是平行四边形
D.对角线互相垂直平分且相等的四边形一定是正方形
8.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )
A.B.C.D.
9.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事,一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,前三天累计票房收入达10亿元,若设增长率为,则可列方程为( )
A.B.
C.D.
10.在一个不透明的袋中装有个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在左右,则袋中红球大约有( )
A.个B.个C.个D.个
11.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是( )
A.①③④B.②④⑤C.①③⑤D.①③④⑤
12.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.
14.如图,在中,在边上,,是的中点,连接并延长交于,则______.
15.已知是,则的值等于____________.
16.二中岗十字路口南北方向的红绿灯设置为:红灯30秒,绿灯60秒,黄灯3秒,小明由南向北经过路口遇到红灯的概率为______.
17.在中,若、满足,则为________三角形.
18.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,函数的图象与函数()的图象相交于点,并与轴交于点.点是线段上一点,与的面积比为2:1.
(1) , ;
(2)求点的坐标;
(1)若将绕点顺时针旋转,得到,其中的对应点是,的对应点是,当点落在轴正半轴上,判断点是否落在函数()的图象上,并说明理由.
20.(8分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.
(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.
(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
21.(8分)如图,已知抛物线与轴交于、两点,,交轴于点,对称轴是直线.
(1)求抛物线的解析式及点的坐标;
(2)连接,是线段上一点,关于直线的对称点正好落在上,求点的坐标;
(3)动点从点出发,以每秒2个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为()秒.若与相似,请求出的值.
22.(10分)如图,抛物线的顶点为,且抛物线与直线相交于两点,且点在轴上,点的坐标为,连接.
(1) , , (直接写出结果);
(2)当时,则的取值范围为 (直接写出结果);
(3)在直线下方的抛物线上是否存在一点,使得的面积最大?若存在,求出的最大面积及点坐标.
23.(10分)商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.
(1)填表:
(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?
24.(10分)如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.
25.(12分)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).
(1)求y与x的函数关系式.
(2)要使日销售利润为720元,销售单价应定为多少元?
(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.
26.(12分)某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、A
4、A
5、C
6、C
7、D
8、D
9、D
10、A
11、D
12、B
二、填空题(每题4分,共24分)
13、.
14、
15、
16、
17、直角
18、0.1
三、解答题(共78分)
19、(1)6,5;(2);(1),点不在函数的图象上.
20、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
21、(1),点坐标为;(2)F;(3)
22、(1)1,-1,1;(2);(3)最大值为,点.
23、(1),;(2)1.
24、cm
25、(1);(2)10元;(3)x为12时,日销售利润最大,最大利润960元
26、(1);(2)8640万元.
种子粒数
100
400
800
1000
2000
5000
发芽种子粒数
85
298
652
793
1604
4005
发芽频率
0.850
0.745
0.815
0.793
0.802
0.801
每天的销售量/台
每台销售利润/元
降价前
8
400
降价后
相关试卷
这是一份山东省泰山外国语学校2023-2024学年九上数学期末统考模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=,一元二次方程配方后化为等内容,欢迎下载使用。
这是一份2023-2024学年山东省泰安市泰山外国语学校九上数学期末联考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知,已知点P,下列式子中,为最简二次根式的是等内容,欢迎下载使用。
这是一份重庆市外国语学校2023-2024学年九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了2020的相反数是,如下图,如果两个相似三角形的面积比是1等内容,欢迎下载使用。