濮阳市重点中学2023-2024学年数学九上期末监测试题含答案
展开
这是一份濮阳市重点中学2023-2024学年数学九上期末监测试题含答案,共8页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如图所示.若y(℃)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图象表示,大致正确的是()
A.B.C.D.
2.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A.B.C.2D.
3.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,若AC=8,CE=12,BD=6,则BF的值是( )
A.14B.15C.16D.17
4.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线( )
A.B.
C.D.
5.如图,正六边形的边长是1cm,则线段AB和CD之间的距离为( )
A.2cmB. cmC. cmD.1cm
6.如图,点C在弧ACB上,若∠OAB = 20°,则∠ACB的度数为( )
A.B.C.D.
7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为( )
A.B.C.D.
8.我县为积极响应创建“省级卫生城市”的号召,为打造“绿色乐至,健康乐至”是我们每个乐至人应尽的义务.某乡镇积极开展垃圾分类有效回收,据统计2017年有效回收的垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,设这两年该乡镇的垃圾有效回收平均增长率为x,则下列方程正确的是( ).
A.1.5(1+2x)=2.8B.
C.D.+
9.下列等式从左到右变形中,属于因式分解的是( )
A.B.
C.D.
10.的半径为5,圆心O到直线l的距离为3,则直线l与的位置关系是
A.相交B.相切C.相离D.无法确定
11.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为
A.3:4B.4:3
C.:2D.2:
12.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为( )
A.300(1+x%)2=950B.300(1+x2)=950C.300(1+2x)=950D.300(1+x)2=950
二、填空题(每题4分,共24分)
13.方程2x2-x=0的根是______.
14.抛物线y=x2﹣4x﹣5与x轴的两交点间的距离为___________.
15.如图,港口A在观测站 O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达 B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为 _____km.
16.若点A(-2,a),B(1,b),C(4,c)都在反比例函数 的图象上,则a、b、c大小关系是________.
17.当﹣1≤x≤3时,二次函数y=﹣(x﹣m)2+m2﹣1可取到的最大值为3,则m=_____.
18.已知,点A(-4,y1),B(,y2)在二次函数y=-x2+2x+c的图象上,则y1与y2的大小关系为________.
三、解答题(共78分)
19.(8分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.
(1)求∠CAD的度数;
(2)若⊙O的半径为4,求弧BC的长.
20.(8分)为了配合全市“创建全国文明城市”活动,某校共1200名学生参加了学校组织的创建全国文明城市知识竞赛,拟评出四名一等奖.
(1)求每一位同学获得一等奖的概率;
(2)学校对本次竞赛获奖情况进行了统计,其中七、八年级分别有一名同学获得一等奖,九年级有2名同学获得一等奖,现从获得一等奖的同学中任选两人参加全市决赛,请通过列表或画树状图的方法,求所选出的两人中既有七年级又有九年级同学的概率.
21.(8分)如图①,在中,,,D是BC的中点.
小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
① ;②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在线段AD上运动时,求AE的最小值.
22.(10分)在△ABC中,∠C=90°.
(1)已知∠A=30°,BC=2,求AC、AB的长;
(2)己知tanA=,AB=6,求AC、BC的长.
23.(10分)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.
(1)求证:;
(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;
(3)连接BH,当点E运动到AD的何位置时有?
24.(10分)如图,⊙为的外接圆,,过点的切线与的延长线交于点,交于点,.
(1)判断与的位置关系,并说明理由;
(2)若,求的长.
25.(12分)如图,把点以原点为中心,分别逆时针旋转,,,得到点,,.
(1)画出旋转后的图形,写出点,,的坐标,并顺次连接、,,各点;
(2)求出四边形的面积;
(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?
26.(12分)如图,AB∥CD,AC与BD交于点E,且AB=6,AE=4,AC=1.
(1)求CD的长;
(2)求证:△ABE∽△ACB.
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、B
4、A
5、B
6、C
7、A
8、B
9、D
10、A
11、C
12、D
二、填空题(每题4分,共24分)
13、x1=, x2=0
14、1
15、1+1
16、a>c>b
17、﹣1.5或1.
18、
三、解答题(共78分)
19、(1)∠CAD=35°;(2).
20、(1);(2).
21、(1)①50;②;(2);(3)AE的最小值.
22、(1)AB=4,AC=2;(2)BC=2,AC=1.
23、(1)见解析;(2)当,有最大值;(3)当点E是AD的中点
24、(1)OE∥BC.理由见解析;(2)
25、 (1)详见解析, ,,;(2)50;(3)
26、(1);(2)见解析
相关试卷
这是一份2023-2024学年德阳市重点中学九上数学期末监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值是,下列两个图形等内容,欢迎下载使用。
这是一份陇南市重点中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程是一元二次方程的是,抛物线的顶点坐标是,的值等于等内容,欢迎下载使用。
这是一份湛江市重点中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列事件中,属于不确定事件的有等内容,欢迎下载使用。