安徽省颍上县第五中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案
展开
这是一份安徽省颍上县第五中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,下列方程是一元二次方程的是,如图,,,以下结论成立的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,△ABC 中,点 D 为边 BC 的点,点 E、F 分别是边 AB、AC 上两点,且 EF∥BC,若 AE:EB=m,BD:DC=n,则( )
A.若 m>1,n>1,则 2S△AEF>S△ABDB.若 m>1,n<1,则 2S△AEF<S△ABD
C.若 m<1,n<1,则 2S△AEF<S△ABDD.若 m<1,n>1,则 2S△AEF<S△ABD
2.如图,△ABC中,点D是AB的中点,点E是AC边上的动点,若△ADE与△ABC相似,则下列结论一定成立的是( )
A.E为AC的中点B.DE是中位线或AD·AC=AE·AB
C.∠ADE=∠CD.DE∥BC或∠BDE+∠C=180°
3.的相反数是( )
A.B.C.2019D.-2019
4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
A.1B.C.D.
5.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是( )
A.4.5米B.8米C.5米D.5.5米
6.如图,学校的保管室有一架5m长的梯子斜靠在墙上,此时梯子与地面所成的角为45°如果梯子底端O固定不变,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB为( )
A.(+1 ) mB.(+3 ) mC.( ) mD.(+1 ) m
7.如图,四边形ABCD内接于,如果它的一个外角∠DCE=64°,那么∠BOD=( )
A.128°B.100°C.64°D.32°
8.下列方程是一元二次方程的是( )
A.2x2-5x+3B.2x2-y+1=0C.x2=0D.+ x=2
9.一张圆形纸片,小芳进行了如下连续操作:
将圆形纸片左右对折,折痕为AB,如图.
将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.
将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.
连结AE、AF、BE、BF,如图.
经过以上操作,小芳得到了以下结论:
;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有
A.1个B.2个C.3个D.4个
10.如图,,,以下结论成立的是( )
A.B.
C.D.以上结论都不对
11.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是
A.B.C.D.
12.如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是( )
A.梯形B.矩形C.菱形D.正方形
二、填空题(每题4分,共24分)
13.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为_______.
14.如图,点、在上,点在轴的正半轴上,点是上第一象限内的一点,若,则圆心的坐标为__.
15.在△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,tan∠BPC=_______________.
16.若是方程的根,则的值为__________.
17.如图,圆是锐角的外接圆,是弧的中点,交于点,的平分线交于点,过点的切线交的延长线于点,连接,则有下列结论:①点是的重心;②;③;④,其中正确结论的序号是__________.
18.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是_____.
三、解答题(共78分)
19.(8分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.
EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
20.(8分)已知抛物线,求证:无论为何值,抛物线与轴总有两个交点.
21.(8分)如图,为的直径,切于点,交的延长线于点,且.
(1)求的度数.
(2)若的半径为2,求的长.
22.(10分)如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
23.(10分)阅读理解:
如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.
解决问题:
(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是 .(填序号)
①ABM;②AOP;③ACQ
(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.
(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.
24.(10分)如图,已知二次函数的图象经过点.
(1)求的值和图象的顶点坐标。
(2)点在该二次函数图象上.
①当时,求的值;
②若到轴的距离小于2,请根据图象直接写出的取值范围.
25.(12分)课本上有如下两个命题:
命题1:圆的内接四边形的对角互补.
命题2:如果一个四边形两组对角互补,那么该四边形的四个顶点在同一个圆上.
请判断这两个命题的真、假?并选择其中一个说明理由.
26.(12分)甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、A
4、B
5、A
6、A
7、A
8、C
9、D
10、C
11、B
12、C
二、填空题(每题4分,共24分)
13、
14、
15、
16、1
17、②④
18、-1.
三、解答题(共78分)
19、(1)证明见解析(2)3
20、证明见解析
21、 (1);(2).
22、(1)y=-x2+4x+5(2)m的值为7或9(3)Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5)
23、(1)②;(2)±1;(3)<<或<<
24、(1);(2)① 11;②.
25、命题一、二均为真命题,证明见解析.
26、.
相关试卷
这是一份2023-2024学年安徽省合肥市庐阳区数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。
这是一份2023-2024学年安徽省含山县九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。
这是一份2023-2024学年安徽省安庆市九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。