2023-2024学年广东省高州市九校联考数学九年级第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.在平面直角坐标系xOy中,经过点(sin45°,cs30°)的直线,与以原点为圆心,2为半径的圆的位置关系是( )
A.相交B.相切
C.相离D.以上三者都有可能
2.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于( )
A.8B.10C.12D.18
3.如图,正方形的边长为,点在边上.四边形也为正方形,设的面积为,则( )
A.S=2B.S=2.4
C.S=4D.S与BE长度有关
4.如图,在Rt△ABC中,AC=3,AB=5,则csA的值为( )
A.B.C.D.
5.已知分式的值为0,则的值是( ).
A.B.C.D.
6.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于( )
A.34°B.46°C.56°D.66°
7.要得到抛物线y=2(x﹣4)2+1,可以将抛物线y=2x2( )
A.向左平移4个单位长度,再向上平移1个单位长度
B.向左平移4个单位长度,再向下平移1个单位长度
C.向右平移4个单位长度,再向上平移1个单位长度
D.向右平移4个单位长度,再向下平移1个单位长度
8.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是( )
A.B.C.D.
9.如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为( )
A.S1=S2B.S1<S2C.S1=S2D.S1>S2
10.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是( )
A.①②③④B.①②③C.①②④D.②③④
11.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠ABB′的度数是( )
A.35°B.40°C.45°D.55°
12.某楼盘2016年房价为每平方米11 000元,经过两年连续降价后,2018年房价为9800元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为( )
A.9800(1-x)2+9800(1-x)+9800=11000B.9800(1+x)2+9800(1+x)+9800=11000
C.11000(1+x)2=9800D.11000(1-x)2=9800
二、填空题(每题4分,共24分)
13.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1 ,
其中正确的是________.
14.若,则锐角α=_____.
15.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF 绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.
16.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.
17.如图,将二次函数y= (x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.
18.若二次函数的图象与x轴只有一个公共点,则实数n=______.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求抛物线的解析式和直线AC的解析式;
(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;
(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
20.(8分)春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:
某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?
21.(8分)(操作发现)
如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;
(2)在(1)所画图形中,∠AB′B=____.
(问题解决)
(3)如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.
小明同学通过观察、分析、思考,对上述问题形成了如下想法:
想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;
想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…
请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)
22.(10分)我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知的两条弦,则、互为“十字弦”,是的“十字弦”,也是的“十字弦”.
(1)若的半径为5,一条弦,则弦的“十字弦”的最大值为______,最小值为______.
(2)如图1,若的弦恰好是的直径,弦与相交于,连接,若,,,求证:、互为“十字弦”;
(3)如图2,若的半径为5,一条弦,弦是的“十字弦”,连接,若,求弦的长.
23.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.
(1)求∠ADC的度数;
(2)求证:AE是⊙O的切线.
24.(10分)近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行如图,山东舰在一次测试中,巡航到海岛A北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶。山东舰经测量得出:可疑船只在P处南偏东45°方向,距P处海里。山东舰立即从P沿南偏西30°方向驶出,刚好在C处成功拦截可疑船只。求被拦截时,可疑船只距海岛A还有多少海里?(,结果精确到0.1海里)
25.(12分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
26.(12分)如图,抛物线y=x2+x﹣与x轴相交于A,B两点,顶点为P.
(1)求点A,点B的坐标;
(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、A
4、B
5、D
6、C
7、C
8、C
9、D
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、①③⑤
14、45°
15、
16、1.
17、y=0.2(x-2)+2
18、1.
三、解答题(共78分)
19、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);
(3)符合条件的点P的坐标为(,)或(,﹣),
20、该单位这次共有30名员工去天水湾风景区旅游.
21、(1)如图,△AB′C′即为所求;见解析;(1)45°;(3)S△APC=.
22、(1)10,6;(2)见解析;(3).
23、(1)60° (2)见解析
24、被拦截时,可疑船只距海岛A还有57.7海里.
25、 (1)详见解析;(2).
26、(1)A(﹣3,0),B(1,0);(2)存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).
2023-2024学年江苏省苏州姑苏区五校联考数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江苏省苏州姑苏区五校联考数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列说法等内容,欢迎下载使用。
2023-2024学年安徽省十校联考九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年安徽省十校联考九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列命题等内容,欢迎下载使用。
2023-2024学年浙江省江北区七校联考数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年浙江省江北区七校联考数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。