蒙古北京八中学乌兰察布分校2023-2024学年数学九上期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为( )
A.4B.2C.2D.
2.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是( )
A.B.C.D.
3.在中,,,则的值是( )
A.B.C.D.
4.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为( )
A.(2,4)B.(2,6)C.(3,6)D.(3,4)
5.如图,∠AOB=90°,∠B=30°,△A′O B′可以看作是由△AOB绕点O顺时针旋转角度得到的.若点A′在AB上,则旋转角的度数是( )
A.30°B.45°C.60°D.90°
6.如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A.B.C.D.
7.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?若设每轮传染中平均一个人传染了x个人,那么x满足的方程是( )
A.B.C.D.
8.对于函数,下列说法错误的是( )
A.这个函数的图象位于第一、第三象限
B.这个函数的图象既是轴对称图形又是中心对称图形
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小
9.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )
A.5,6,-8B.5,-6,-8C.5,-6,8D.6,5,-8
10.如图是某个几何体的三视图,则该几何体是( )
A.长方体B.圆锥C.圆柱D.三棱柱
二、填空题(每小题3分,共24分)
11.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.
12.如图,一架长为米的梯子斜靠在一竖直的墙上,这时测得,如果梯子的底端外移到,则梯子顶端下移到,这时又测得,那么的长度约为______米.(,,,)
13.分解因式:=____________.
14.已知线段、满足,则________.
15.如图,OA、OB是⊙O的半径,CA、CB是⊙O的弦,∠ACB=35°,OA=2,则图中阴影部分的面积为_____.(结果保留π)
16.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.
17.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.
18.如图,AB是⊙O的直径,C、D为⊙O上的点,P为圆外一点,PC、PD均与圆相切,设∠A+∠B=130°,∠CPD=β,则β=_____.
三、解答题(共66分)
19.(10分)如图,△ABC中,AB=AC=10,BC=6,求sinB的值.
20.(6分)等腰中,,作的外接圆⊙O.
(1)如图1,点为上一点(不与A、B重合),连接AD、CD、AO,记与的交点为.
①设,若,请用含与的式子表示;
②当时,若,求的长;
(2)如图2,点为上一点(不与B、C重合),当BC=AB,AP=8时,设,求为何值时,有最大值?并请直接写出此时⊙O的半径.
21.(6分)如图,要设计一幅宽为20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为504cm2,彩条的宽应是多少cm.
22.(8分)在锐角三角形中,已知,, 的面积为 ,求的余弦值.
23.(8分)已知关于的一元二次方程的一个根是1,求它的另一个根及m的值.
24.(8分)在数学活动课上,同学们用一根长为1米的细绳围矩形.
(1)小明围出了一个面积为600cm2的矩形,请你算一算,她围成的矩形的长和宽各是多少?
(2)小颖想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.
25.(10分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.
(Ⅰ)求证:∠A=∠EBC;
(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.
26.(10分)甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、C
4、C
5、C
6、D
7、D
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、a≤且a≠1.
12、
13、
14、
15、
16、
17、3
18、100°
三、解答题(共66分)
19、
20、(1)①;②;(2)PB=5时,S有最大值,此时⊙O的半径是.
21、1cm.
22、
23、另一根为-3,m=1
24、(1)20,30;(2)用这根细绳围成一个边长为25㎝的正方形时,其面积最大,最大面积是625
25、(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°
26、.
北京十一中学分校2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份北京十一中学分校2023-2024学年九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了下列四个图形是中心对称图形,下列事件中,属于不确定事件的有,抛物线的顶点坐标为等内容,欢迎下载使用。
内蒙古北京八中乌兰察布分校2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份内蒙古北京八中乌兰察布分校2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,对于二次函数y=,下列各组图形中,一定相似的是等内容,欢迎下载使用。
2023-2024学年内蒙古北京八中学乌兰察布分校九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年内蒙古北京八中学乌兰察布分校九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了下列计算正确的是,如果等内容,欢迎下载使用。