福建省福州市平潭综合实验区2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案
展开
这是一份福建省福州市平潭综合实验区2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了已知点,点P1等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,在△中,∥,如果,,,那么的值为( )
A.B.C.D.
2.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( )
A.5%B.20%C.15%D.10%
3.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是( )。
A.πr2B.πr2C.πr2D.πr2
4.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( )
A.B.C.D.
5.如图,△ABC中,∠A=78°,AB=4,AC=1.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A.B.C.D.
6.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是( )
A.①②③④B.①②③C.①②④D.②③④
7.如图,是坐标原点,菱形顶点的坐标为,顶点在轴的负半轴上,反比例函数的图象经过顶点,则的值为( )
A.B.C.D.
8.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )
A.30°B.45°C.60°D.40°
9.已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数y=-的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是( )
A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1
10.点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是 .
12.不等式组的解是________.
13.如图,中,边上的高长为.作的中位线,交于点;作的中位线,交于点;……顺次这样做下去,得到点,则________.
14.如果是一元二次方程的一个根,那么的值是__________.
15.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.
16.抛物线y=﹣2x2+4x﹣1的对称轴是直线________ .
17.分别写有数字0,|-2|,-4,,-5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是_________.
18.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于__________.
三、解答题(共66分)
19.(10分)如图,在平行四边形中,对角线,相交于点为的中点,连接交于点,且.
(1)求的长;
(2)若,求.
20.(6分)在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.
(1) ①直接写出抛物线的对称轴是________;
②用含a的代数式表示b;
(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a的取值范围.
21.(6分)如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是1.
(1)求抛物线的解析式及顶点坐标;
(1)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
22.(8分)如图,点E为□ABCD中一点,EA=ED,∠AED=90º,点F,G分别为AB,BC上的点,连接DF,AG,AD=AG=DF,且AG⊥DF于点H,连接EG,DG,延长AB,DG相交于点P.
(1)若AH=6,FH=2,求AE的长;
(2)求证:∠P=45º;
(3)若DG=2PG,求证:∠AGE=∠EDG.
23.(8分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出件,每件获利元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价元,则平均每天可多售出件,要想平均每天在销售这种童装上获利元,那么每件童装应降价多少元?
24.(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
25.(10分)已知:如图,中,平分,是上一点,且.判断与的数量关系并证明.
26.(10分)在一个不透明的袋子里,装有3个分别标有数字﹣1,1,2的乒乓球,他们的形状、大小、质地等完全相同,随机取出1个乒乓球.
(1)写出取一次取到负数的概率;
(2)小明随机取出1个乒乓球,记下数字后放回袋子里,摇匀后再随机取出1个乒兵球,记下数字.用画树状图或列表的方法求“第一次得到的数与第二次得到的数的积为正数”发生的概率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、D
4、C
5、C
6、B
7、C
8、A
9、C
10、D
二、填空题(每小题3分,共24分)
11、π﹣1.
12、x>4
13、或
14、6
15、
16、x=1
17、
18、或
三、解答题(共66分)
19、(1)6;(2)4
20、(1)①直线x=1;②b=-1a;(1)-1≤a<-1或1<a≤1.
21、(1),顶点D(1,);(1)C(,0)或(,0)或(,0);(2)
22、(1);(2)见详解;(3)见详解
23、应该降价元.
24、米.
25、,理由见解析.
26、(1);(2)
相关试卷
这是一份2023-2024学年福建省平潭综合实验区七校联考数学八上期末检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列选项中最简分式是,若分式的值为零,则x的值是等内容,欢迎下载使用。
这是一份2023-2024学年福建省福州市平潭综合实验区数学八年级第一学期期末综合测试试题含答案,共6页。试卷主要包含了函数的图象不经过,点P象限,如图,中,,,,则等于等内容,欢迎下载使用。
这是一份2023年福建省福州市平潭综合实验区中考数学适应性试卷(含答案解析),共25页。试卷主要包含了062×103B, 下列计算正确的是等内容,欢迎下载使用。