江苏省盐城市大丰区沈灶中学2023-2024学年数学九年级第一学期期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=2,CD=1,则△ABC的边长为( )
A.3B.4C.5D.6
2.下列关于x的一元二次方程没有实数根的是( )
A.B.C.D.
3.如图是二次函数y=ax2+bx+c(a≠1)的图象的一部分,给出下列命题:①a+b+c=1;②b>2a;③方程ax2+bx+c=1的两根分别为﹣3和1;④当x<1时,y<1.其中正确的命题是( )
A.②③B.①③C.①②D.①③④
4.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为( )
A.20°B.30°C.40°D.45°
5.从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为( ).
A.B.C.D.
6.如图,将小正方形AEFG绕大正方形ABCD的顶点A顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG、DE相交于点O,再连接AO、BE、DG.王凯同学在探究该图形的变化时,提出了四个结论:
①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中结论正确的个数有( )
A.1个B.2个C.3个D.4个
7.sin45°的值等于( )
A.B.C.D.1
8.如图,△ABC中,DE∥BC,则下列等式中不成立的是( )
A.B.C.D.
9.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为( )
A.2B.-2C.4D.-4
10.如图,是的外接圆,已知,则的大小为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.
12.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.
13.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是______cm.
14.如图,扇形的圆心角是为,四边形是边长为的正方形,点分别在在弧上,那么图中阴影部分的面积为__________.(结果保留)
15.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.
16.如图,已知△AOB是直角三角形,∠AOB=90°,∠B=30°,点A在反比例函数y=的图象上,若点B在反比例函数y=的图象上,则的k值为_______.
17.已知二次函数中,函数与自变量的部分对应值如下表:
则当时,的取值范围是______.
18.如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点……按此做法进行下去,则点的坐标是_____.
三、解答题(共66分)
19.(10分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:
(1)求y与x之间的函数关系式;
(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?
20.(6分)教育部基础教育司负责人解读“2020新中考”时强调要注重学生分析与解决问题的能力,要增强学生的创新精神和综合素质.王老师想尝试改变教学方法,将以往教会学生做题改为引导学生会学习.于是她在菱形的学习中,引导同学们解决菱形中的一个问题时,采用了以下过程(请解决王老师提出的问题):
先出示问题(1):如图1,在等边三角形中,为上一点,为上一点,如果,连接、,、相交于点,求的度数.
通过学习,王老师请同学们说说自己的收获.小明说发现一个结论:在这个等边三角形中,只要满足,则的度数就是一个定值,不会发生改变.紧接着王老师出示了问题(2):如图2,在菱形中,,为上一点,为上一点,,连接、,、相交于点,如果,,求出菱形的边长.
问题(3):通过以上的学习请写出你得到的启示(一条即可).
21.(6分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.
(1)求证:AC是∠DAB的平分线;
(2)若AB=10,AC=4,求AE的长.
22.(8分)计算:cs30°•tan60°+4sin30°.
23.(8分)如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)
24.(8分)实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费万元,购买乙型智能设备花费万元,购买的两种设备数量相同,且两种智能设备的单价和为万元.
求甲、乙两种智能设备单价;
垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的,且生产每吨燃料棒所需人力成本比物资成本的倍还多元.调查发现,若燃料棒售价为每吨元,平均每天可售出吨,而当销售价每降低元,平均每天可多售出吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到元,且保证售价在每吨元基础上降价幅度不超过,求每吨燃料棒售价应为多少元?
25.(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.
26.(10分)2019年10月1日,是新中国70周年的生日,在首都北京天安门广场举行了盛大的建国70周年大阅兵,接受的检阅,令国人振奋,令世界瞩目.在李克强总理庄严的指令下,56门礼炮 ,70响轰鸣,述说着56个民族,70载春华秋实的拼搏!图1是礼炮图片,图2是礼炮抽象示意图.已知:是水平线,,,的仰角分别是30°和10°,,,且.
(1)求点的铅直高度;
(2)求两点的水平距离.
(结果精确到,参考数据:)
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、B
4、C
5、B
6、D
7、B
8、B
9、D
10、B
二、填空题(每小题3分,共24分)
11、3
12、(6,4).
13、1;
14、
15、.
16、-3
17、
18、
三、解答题(共66分)
19、(1)y=﹣0.5x+110;(2)房价定为120元时,合作社每天获利最大,最大利润是5000元.
20、(1);(2);(3)答案不唯一,合理即可
21、(1)详见解析;(2)1.
22、.
23、作图见解析.
24、(1)甲设备万元每台,乙设备万元每台.(2)每吨燃料棒售价应为元.
25、解:(3)一次函数的表达式为
(4)当销售单价定为4元时,商场可获得最大利润,最大利润是893元
(3)销售单价的范围是.
26、 (1)点A的铅直高度是2019mm;(2) A,E两点的水平距离约为3529mm.
…
-2
-1
0
1
2
…
…
10
5
2
1
2
…
江苏省盐城市大丰区大丰区万盈镇沈灶初级中学2023-2024学年九上数学期末监测试题含答案: 这是一份江苏省盐城市大丰区大丰区万盈镇沈灶初级中学2023-2024学年九上数学期末监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中是中心对称图形的有个,若抛物线经过点,则的值在等内容,欢迎下载使用。
2023-2024学年江苏省盐城市大丰区大丰区万盈镇沈灶初级中学九年级数学第一学期期末教学质量检测试题含答案: 这是一份2023-2024学年江苏省盐城市大丰区大丰区万盈镇沈灶初级中学九年级数学第一学期期末教学质量检测试题含答案,共7页。
江苏省盐城市大丰区大丰区万盈镇沈灶初级中学2023-2024学年数学八上期末学业水平测试模拟试题含答案: 这是一份江苏省盐城市大丰区大丰区万盈镇沈灶初级中学2023-2024学年数学八上期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,计算的结果是,下列各式能用平方差公式计算的是,如图,在中,按以下步骤作图,下列结论正确的是,若x2﹣2等内容,欢迎下载使用。