江苏省徐州市新沂市2023-2024学年数学九上期末检测模拟试题含答案
展开
这是一份江苏省徐州市新沂市2023-2024学年数学九上期末检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.已知关于的二次函数的图象在轴上方,并且关于的分式方程有整数解,则同时满足两个条件的整数值个数有( ).
A.2个B.3个C.4个D.5个
2.《孙子算经》中有一道题: “今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为( )
A.B.C.D.
3.获2019年度诺贝尔化学奖的“锂电池”创造了一个更清洁的世界.我国新能源发展迅猛,某种特型锂电池2016年销售量为8万个,到2018年销售量为97万个.设年均增长率为x,可列方程为( )
A.8(1+x)2=97B.97(1﹣x)2=8C.8(1+2x)=97D.8(1+x2)=97
4.已知一个圆锥的母线长为30 cm,侧面积为300πcm,则这个圆锥的底面半径为( )
A.5 cmB.10 cmC.15 cmD.20 cm
5.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的长为( )
A.3B.4C.5D.6
6.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=( )
A.4B.6C.8D.10
7.如图,某停车场人口的栏杆,从水平位置AB绕点O旋转到A'B′的位置已知AO=4m,若栏杆的旋转角∠AOA′=50°时,栏杆A端升高的高度是( )
A.B.4sin50°C.D.4cs50°
8.反比例函数与正比例函数在同一坐标系中的大致图象可能是( )
A.B.
C.D.
9.如图,为的直径延长到点,过点作的切线,切点为,连接,为圆上一点,则的度数为( )
A.B.C.D.
10.如图,点A、B、C都在上,若∠AOB=72°,则∠ACB的度数为()
A.18°B.30°C.36°D.72°
二、填空题(每小题3分,共24分)
11.如图,已知直线y=mx与双曲线y=一个交点坐标为(3,4),则它们的另一个交点坐标是_____.
12.计算:2sin30°+tan45°=_____.
13.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.
14.在中,,,,则的长是__________.
15.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.
16. “国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有_____人.
17.化简: -2a2+(a2-b2)=______.
18.在、、、1、2五个数中,若随机取一个数作为反比例函数中的值,则该函数图象在第二、第四象限的概率是__________.
三、解答题(共66分)
19.(10分)解方程:x2﹣4x﹣12=1.
20.(6分)附加题,已知:矩形,,动点从点开始向点运动,动点速度为每秒1个单位,以为对称轴,把折叠,所得与矩形重叠部分面积为,运动时间为秒.
(1)当运动到第几秒时点恰好落在上;
(2)求关于的关系式,以及的取值范围;
(3)在第几秒时重叠部分面积是矩形面积的;
(4)连接,以为对称轴,将作轴对称变换,得到,当为何值时,点在同一直线上?
21.(6分)某景区平面图如图1所示,为边界上的点.已知边界是一段抛物线,其余边界均为线段,且,抛物线顶点到的距离.以所在直线为轴,所在直线为轴,建立平面直角坐标系.
求边界所在抛物线的解析式;
如图2,该景区管理处欲在区域内围成一个矩形场地,使得点在边界上,点在边界上,试确定点的位置,使得矩形的周长最大,并求出最大周长.
22.(8分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
23.(8分)某公司开发一种新的节能产品,工作人员对销售情况进行了调查,图中折线表示月销售量(件)与销售时间(天)之间的函数关系,已知线段表示函数关系中,时间每增加天,月销售量减少件,求与间的函数表达式.
24.(8分)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).
(1)求点A与点B的坐标;
(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.
(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
25.(10分)假期期间,甲、乙两位同学到某影城看电影,影城有《我和我的祖国》(记为)、《中国机长》(记为)、《攀登者》(记为)三部电影,甲、乙两位同学分别从中任选一部观看,每部被选中的可能性相同.用树状图或列表法求甲、乙两位同学选择同一部电影的概率.
26.(10分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、A
4、B
5、D
6、D
7、B
8、A
9、A
10、C
二、填空题(每小题3分,共24分)
11、(﹣3,﹣4)
12、1.
13、
14、
15、
16、1
17、-a2-b2
18、
三、解答题(共66分)
19、x1=6,x2=﹣2.
20、(1)第2秒时;(2);(3)第4秒时;(4)=1或4
21、(1)();(2)点与点重合,取最大值.
22、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.
23、.
24、(1)A(﹣3,0),B(1,0);(2)M(4,7);﹣2≤m≤4;(3)点P的坐标为P(﹣1,4)或(﹣1,).
25、,见解析
26、(1)y=﹣2x2+120x﹣1600;(2)当销售单价定为每双30元时,每天的利润最大,最大利润为1元.
相关试卷
这是一份江苏省徐州市部分2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中是中心对称图形的共有,按照一定规律排列的个数,定义新运算等内容,欢迎下载使用。
这是一份江苏省新沂市度第二期期2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省徐州市树人中学数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了方程的两根之和是等内容,欢迎下载使用。