山东省德州市经开区2023-2024学年九上数学期末调研模拟试题含答案
展开
这是一份山东省德州市经开区2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了下列运算中,正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列一元二次方程中,没有实数根的是( ).
A.B.
C.D.
2.二次函数()的大致图象如图所示,顶点坐标为,点是该抛物线上一点,若点是抛物线上任意一点,有下列结论:
①;
②若,则;
③若,则;
④若方程有两个实数根和,且,则.
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
3.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( )
A.B.C.D.
4.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是( )
A.摸出的是白球B.摸出的是黑球
C.摸出的是红球D.摸出的是绿球
5.下列运算中,正确的是( ).
A.2x x 2B.x2 y y x2C.x x4 2xD.2x3 6x3
6.如图,两根竹竿和都斜靠在墙上,测得,则两竹竿的长度之比等于( )
A.B.C.D.
7.如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为( )
A.(-3,0)B.(-2,0)C.(-4,0)或(-2,0)D.(-4,0)
8.在圆内接四边形中,与的比为,则的度数为( )
A.B.C.D.
9.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高( )
A.5mB.6mC.7mD.8m
10.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“”的概率相同的是( )
A.抽到“大王”B.抽到“2”C.抽到“小王”D.抽到“红桃”
二、填空题(每小题3分,共24分)
11.二次函数图象与轴交于点,则与图象轴的另一个交点的坐标为__.
12.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为_____.
13.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为1.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括1).
14.二次函数的图象与y轴的交点坐标是__.
15.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为_______cm.
16.计算:cs245°-tan30°sin60°=______.
17.圆锥的底面半径是1,侧面积是3π,则这个圆锥的侧面展开图的圆心角为________.
18.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)
三、解答题(共66分)
19.(10分)如图,抛物线y=x2+x﹣与x轴相交于A,B两点,顶点为P.
(1)求点A,点B的坐标;
(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.
20.(6分)(1)计算:;
(2)解方程.
21.(6分)如图,已知△ABC,∠B=90゜,AB=3,BC=6,动点P、Q同时从点B出发,动点P沿BA以1个单位长度/秒的速度向点A移动,动点Q沿BC以2个单位长度/秒的速度向点C移动,运动时间为t秒.连接PQ,将△QBP绕点Q顺时针旋转90°得到△,设△与△ABC重合部分面积是S.
(1)求证:PQ∥AC;
(2)求S与t的函数关系式,并直接写出自变量t的取值范围.
22.(8分)已知是一张直角三角形纸片,其中,,小亮将它绕点逆时针旋转后得到,交直线于点.
(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.
(2)如图2,当,求为等腰三角形时的度数.
23.(8分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动转盘,直到指针指向一个区域内为止)
(1)请利用画树状图或列表的方法(只选其中一种),表示出转转盘可能出现的所有结果;
(2)如果将两次转转盘指针所指区域的数据相乘,乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?
24.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O为位似中心,△ABC与△A1B1C1位似比为1:2,在y轴的左侧,请画出△ABC放大后的图形△A1B1C1.
25.(10分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道 AB ,栈道 AB 与景区道路CD 平行.在 C 处测得栈道一端 A 位于北偏西 42°方向,在 D 处测得栈道另一端 B 位于北偏西 32°方向.已知 CD =120 m , BD =80 m ,求木栈道 AB 的长度(结果保留整数) .
(参考数据:,,,,,)
26.(10分)如图,是的直径,轴,交于点.
(1)若点,求点的坐标;
(2)若为线段的中点,求证:直线是的切线.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、A
5、B
6、D
7、A
8、C
9、D
10、B
二、填空题(每小题3分,共24分)
11、
12、1
13、9或2或3.
14、(0,3)
15、
16、0
17、120°
18、1
三、解答题(共66分)
19、(1)A(﹣3,0),B(1,0);(2)存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).
20、(1);(2)无解
21、(1)见解析;(2)
22、(1)BD与FM互相垂直,理由见解析;(2)β的度数为30°或75°或120°.
23、(1)见解析;(2).
24、见解析.
25、
26、(1);(2)见解析.
相关试卷
这是一份2023-2024学年山东省威海市经开区九年级(上)期末数学试卷(五四学制)(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市经开区2023-2024学年数学九上期末监测模拟试题含答案,共8页。试卷主要包含了下列图标中,是中心对称图形的是,抛物线的开口方向是等内容,欢迎下载使用。
这是一份江苏省无锡市经开区2023-2024学年九上数学期末联考试题含答案,共7页。试卷主要包含了下列实数等内容,欢迎下载使用。