


山东省德州市经济开发区抬头寺镇中学2023-2024学年九上数学期末学业质量监测模拟试题含答案
展开
这是一份山东省德州市经济开发区抬头寺镇中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知一组数据等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( )
A.线段B.三角形C.平行四边形D.正方形
2.在同一坐标系中,二次函数y=x2+2与一次函数y=2x的图象大致是 ( )
A.AB.BC.CD.D
3.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼( )
A.条B.条C.条D.条
4.我市参加教师资格考试的人数逐年增加,据有关部门统计,2017年约为10万人次,2019年约为18.8万人次,设考试人数年均增长率为x,则下列方程中正确的是
A.10(1+2x)=18.8B.=10
C.=18.8D.=18.8
5.已知点都在函数的图象上,则y1、y2、y3的大小关系是( )
A.y2>y1>y3B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2
6.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4B..5C.6D.8
7.已知在中,,,那么下列说法中正确的是( )
A.B.C.D.
8.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有( )
A.24B.36C.40D.90
9.如图,线段,点是线段的黄金分割点(),点是线段的黄金分割点(),点是线段的黄金分割点(),..,依此类推,则线段的长度是( )
A.B.C.D.
10.已知一组数据:-1,0,1,2,3是它的一个样本,则这组数据的平均值大约是( )
A.5B.1C.-1D.0
11.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为 ( )
A.20°B.25°C.40°D.50°
12.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高______
14.若两个相似三角形的面积比是9:25,则对应边上的中线的比为 _________.
15.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.
16.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是
17.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是 .
18.已知圆O的直径为4,点M到圆心O的距离为3,则点M与⊙O的位置关系是_____.
三、解答题(共78分)
19.(8分)已知:如图,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系
(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.
20.(8分) (1)计算:(2119-)1-(cs61°)-2+-tan45°;
(2)解方程:2x2-4x+1=1.
21.(8分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
例:将化为分数形式
由于,设x=0.777…①
则10x=7.777…②
②‒①得9x=7,解得,于是得.
同理可得,
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
(基础训练)
(1) , ;
(2)将化为分数形式,写出推导过程;
(能力提升)
(3) , ;(注:,2.01818…)
(探索发现)
(4)①试比较与1的大小: 1;(填“>”、“<”或“=”)
②若已知,则 .(注:0.285714285714…)
22.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
23.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图(1),连接AF、CE.
①四边形AFCE是什么特殊四边形?说明理由;
②求AF的长;
(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
24.(10分)甲、乙两人进行摸牌游戏现有三张除数字外都相同的牌,正面分别标有数字2,5,1.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为4的倍数,则甲获胜;若抽取的数字和为奇数,则乙获胜这游戏公平吗?请用概率的知识加以解释.
25.(12分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.
(1)求将材料加热时,y与x的函数关系式;
(2)求停止加热进行操作时,y与x的函数关系式;
(3)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?
26.(12分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、B
4、C
5、A
6、C
7、A
8、D
9、A
10、B
11、B
12、C
二、填空题(每题4分,共24分)
13、8m
14、3:1
15、或
16、y2=.
17、m≤且m≠1.
18、在圆外
三、解答题(共78分)
19、(1)y=;(2)当t=时,d有最大值,最大值为2;(3)在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.
20、(1)-2;(2),
21、(1),;(2),推导过程见解析;(3),;(4)①;②.
22、 (1)抛物线的解析式为:y=﹣x1+x+1
(1)存在,P1(,2),P1(,),P3(,﹣)
(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
23、(1) ①菱形,理由见解析;②AF=1;(2) 秒.
24、(1)两人抽取相同数字的概率是;(2)这个游戏公平.
25、(1)y=9x+15;(2)y=;(3)15分钟
26、(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.
(2)2019年该贫困户的家庭年人均纯收入能达到4200元.
相关试卷
这是一份山东省德州市经济开发区抬头寺中学2023-2024学年九年级数学第一学期期末达标测试试题含答案,共7页。试卷主要包含了点P关于原点的对称点的坐标为,下列四个数中是负数的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省德州市经济开发区抬头寺中学八年级数学第一学期期末联考模拟试题含答案,共7页。试卷主要包含了,是两个连续整数,若,则,计算的结果是等内容,欢迎下载使用。
这是一份2023-2024学年山东省德州市经济开发区抬头寺镇中学八年级数学第一学期期末统考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列命题属于真命题的是等内容,欢迎下载使用。