2023-2024学年河北省石家庄市裕华区第四十中学九年级数学第一学期期末学业质量监测模拟试题含答案
展开
这是一份2023-2024学年河北省石家庄市裕华区第四十中学九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了两三角形的相似比是2等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为( )
A.k>﹣B.k>4C.k<﹣1D.k<4
2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为( )
A.10B.12C.16D.18
3.如图,是的直径,点,在上,连接,,,如果,那么的度数是( )
A.B.C.D.
4.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是( )
A.主视图B.左视图
C.俯视图D.主视图和俯视图
5.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( )
①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.
A.4B.3C.2D.1
6.某车库出口安装的栏杆如图所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75)
A.B.C.D.
7.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为( )
A.B.C.D.
8.若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )
A.B.C.D.
9.两三角形的相似比是2:3,则其面积之比是( )
A.:B.2:3C.4:9D.8:27
10.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑦个图形中五角星的个数为( )
A.90B.94C.98D.102
二、填空题(每小题3分,共24分)
11.方程x2=8x的根是______.
12.在本赛季比赛中,某运动员最后六场的得分情况如下:17、15、21、28、12、19,则这组数据的方差为______.
13.如图,菱形AD的边长为2,对角线AC、BD相交于点O,BD=2,分别以AB、BC为直径作半圆,则图中阴影部分的面积为__________.
14.如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则sin∠OCB=___________.
15.如图,在中,交于点,交于点.若、、,则的长为_________.
16.已知方程的两实数根的平方和为,则k的值为____.
17.若是一元二次方程的两个实数根,则_______.
18.如图,在中,,,,则的长为_____.
三、解答题(共66分)
19.(10分)从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)
甲:301,300,305,302,303,302,300,300,298,299
乙:305,302,300,300,300,300,298,299,301,305
(1)分别计算甲、乙这两个样本的平均数和方差;
(2)比较这两台包装机包装质量的稳定性.
20.(6分)元元同学在数学课上遇到这样一个问题:
如图1,在平面直角坐标系中,⊙经过坐标原点,并与两坐标轴分别交于、两点,点的坐标为,点在⊙上,且,求⊙的半径.
图1 图2
元元的做法如下,请你帮忙补全解题过程.
解:如图2,连接
,
是⊙的直径. (依据是 )
且
(依据是 )
.即⊙的半径为 .
21.(6分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为____.
22.(8分)如图,已知:
的长等于________;
若将向右平移个单位得到,则点的对应点的坐标是________;
若将绕点按顺时针方向旋转后得到,则点对应点的坐标是________.
23.(8分)总书记指出,到2020年全面建成小康社会,实现第一个百年奋斗目标.为贯彻的指示,实现精准脱贫,某区相关部门指导对口帮扶地区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量(袋)与每袋的售价(元)之间关系如下表:
如果日销售量y (袋)是每袋的售价x(元)的一次函数,请回答下列问题:
(1)求日销售量y(袋)与每袋的售价x(元)之间的函数表达式;
(2)求日销售利润(元)与每袋的售价(元)之间的函数表达式;
(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?
(提示:每袋的利润=每袋的售价每袋的成本)
24.(8分)已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点(3,﹣3).
(1)求抛物线的解析式及顶点A的坐标;
(2)将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,如图,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.
25.(10分)如图,抛物线y=ax2+bx+c (a≠0)过点M(-2,3),顶点坐标为N(-1,4),且与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当PM+PB的值最小时,求点P的坐标;
26.(10分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,.
(1)求抛物线的解析式和对称轴;
(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);
(3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、C
4、B
5、B
6、A
7、C
8、C
9、C
10、C
二、填空题(每小题3分,共24分)
11、x1=0,x2=1
12、.
13、-
14、
15、6
16、3
17、1
18、
三、解答题(共66分)
19、(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析
20、的圆周角所对的弦是直径;同弧所对的圆周角相等,
21、或.
22、; , .
23、(1);(2)P=;(3)当每袋特色农产品以25元出售时,才能使每日所获得的利润最大,最大利润是225元.
24、(1)y=﹣x2+2x,顶点A的坐标是(1,1);(2)CD长为定值.
25、(1)二次函数的解析式为:;(2)点P的坐标为(-1,2)
26、(1),函数的对称轴为:;(2)点;(3)存在,点的坐标为或.
每袋的售价(元)
…
20
30
…
日销售量(袋)
…
20
10
…
相关试卷
这是一份河北省石家庄市新华区2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份河北省石家庄市裕华区第四十中学2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共9页。试卷主要包含了某班7名女生的体重等内容,欢迎下载使用。
这是一份2023-2024学年河北省石家庄市裕华区实验中学数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法不正确的是,下列函数中,是二次函数的是等内容,欢迎下载使用。