天津市部分区2022-2023学年七年级上学期期末练习数学试卷(含解析)
展开一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中.)
1. 下列各数是负数的是( )
A. 0B. 2C. D.
【答案】D
解:A、0既不是正数,也不是负数,故该选项不符合题意;
B、,2是正数,故该选项不符合题意;
C、,是正数,故该选项不符合题意;
D、,是负数,故该选项符合题意.
故选:D.
2. 如果的相反数是1,则的值为( )
A. 1B. 2C. -1D. -2
【答案】A
解:的相反数为
故选A.
3. 数字162000用科学记数法表示正确的是( )
A. B.
C. D.
【答案】C
,
故选:C.
4. 一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )
A. B.
C. D.
【答案】A
∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,
∴从正面看到的平面图形是
,
故选A.
5. 把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是( )
A. 两点确定一条直线B. 两点之间,线段最短
C. 两点之间,直线最短D. 线段比直线短
【答案】B
解:把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是
两点之间,线段最短.
故选:B
6. 小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是﹣2℃,则她家冰箱冷藏室温度比冷冻室温度高( )
A. 3℃B. ﹣3℃C. 7℃D. ﹣7℃
【答案】C
依题意得:5-(-2)=5+2=7℃,
所以冷藏室温度比冷冻室温度高7℃.
故选C.
7. 如果关于x的方程3x﹣1=kx的解为1,那么k的值为( )
A. B. 1C. 2D. 4
【答案】C
解:∵关于x的方程3x-1=kx的解为1,
∴3-1=k,
∴k=2.
故选:C.
8. 下列说法中,正确的是( )
A. 的系数是,次数是3B. 不是整式
C. 与不是同类项D. 2022是单项式
【答案】D
解:A. 的系数是,次数是4,故选项A不正确;
B. 是数与字母的积的代数式是单项式是整式,故选项B不正确;
C. 与所含字母相同,相同字母的指数也相同,是同类项,故选项C不正确
D. 2022是单独的数是单项式,故选项D正确.
故选D.
9. 已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )
A. 4或B. 6或C. 6或2D. 或
【答案】B
解:依题意,当在点的左边时,点表示的数为,
当点在点的右边时,点表示的数为,
故选:B.
10. 如图,和都是直角,,则的度数为( )
A. B. C. D.
【答案】C
解:∵和都是直角,
∴,
∴,
∴.
故选C.
11. 整理一批图书,由一个人做要完成.现由某小组同学一起先整理后,有2名同学因故离开,剩下同学再整理,正好完成这项工作.假设每名同学的工作效率相同,设该小组共有x名同学,则x满足的方程是( )
A. B.
C D.
【答案】A
解∶设该小组共有x名同学,由题意得,
,
故选∶A.
12. 有理数a,b在数轴上对应的点的位置如图所示,对于下列四个结论:
①;②;③;④.其中正确的是( )
A. ①②③④B. ①②③C. ①③④D. ②③④
【答案】B
解:由数轴得:,,
∴,,,
∴正确的是①②③,④错误,
故选B.
二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上.)
13. 计算:______.
【答案】
解:
故答案为:
14. 用四舍五入法把3.786精确到百分位,所得到的近似数为_________.
【答案】
解:将精确到百分位,所得到的近似数为.
故答案为:
15. 一个角的补角等于,这个角等于____________(度).
【答案】110
解:一个角的补角等于,
则这个角等于
故这个角等于.
故答案为:110.
16. 已知是关于x的一元一次方程,则_________.
【答案】4
由题意得,
解得,
故答案为:4.
17. 已知C为直线AB上一点,线段AB=4cm,BC=2cm,M是线段AC的中点,则线段 AM的长为_____.
【答案】1cm或3cm
分两种情况:
当点C在线段AB上时,
∵AB=4cm,BC=2cm,
∴AC=AB-BC=4cm-2cm=2cm,
∵M是线段AC的中点,
∴AM=AC=1cm;
当点C在线段AB的延长线上时,
∵AB=4cm,BC=2cm,
∴AC=AB+BC=4cm+2cm=6cm,
∵M是线段AC的中点,
∴AM=AC=3cm;
故答案为:1cm或3cm.
.
18. 观察下列各单项式:,根据你发现的规律,可知第10个单项式是___________.
【答案】
解:∵一列单项式:,
∴第n个单项式为:(为正整数),
∴第10个单项式为:,
故答案为:.
三、解答题(本大题共小题8分,其余每小题10分,共66分.解答应写出文字说明、演算步骤或证明过程.)
19. 计算:
(1);
(2).
【答案】(1)48 (2)
(1)
解:
;
(2)
解:
.
20. 解方程
(1);
(2).
【答案】(1)
(2)
(1)
解:,
,
,
,
;
(2)
解:
,
,
,
,
.
21. (1)计算:;
(2)先化简,再求值:,其中.
【答案】(1);(2),.
解:(1)
;
(2)
,
当时,原式.
22. 某班手工兴趣小组的同学们计划制作一批中国结送给敬老院作为新年礼物.如果每人制作9个,那么就比计划少做17个;如果每人制作12个,那么就比计划多做4个.这个手工兴趣小组共有多少人?计划要做的这批中国结有多少个?
【答案】这个手工兴趣小组共有7人,计划要做的这批中国结有80个
解:设这个手工兴趣小组共有人,
由题意可得:,
解得:,
∴,
答:这个手工兴趣小组共有7人,计划要做的这批中国结有80个.
23. 如图,点C,D在线段上,且,E是线段的中点,若,求线段的长.
请将下面的解题过程补充完整;
解:设.
∵,
∴.
又∵点E是线段的中点,
∴________(用含x的代数式表示),
∴_________(用含x的代数式表示).
又∵,
可得方程___________,
解方程得___________.
∴__________.
【答案】,,,,4.
解:设.
∵,
∴.
又∵点E是线段的中点,
∴(用含x的代数式表示),
∴(用含x的代数式表示).
又∵,
可得方程,
解方程得.
∴.
故答案为,,,,4.
24. 如图,点O在直线上,,是的平分线.
(1)若,求的度数;
(2)若为的平分线,求的度数.
【答案】(1)
(2)
(1)
解:∵点在直线上,
∴,
∵,,
∴.
(2)
解:∵为的平分线,
∴,,
∵,
∴,
∵是的平分线,
∴,
∴,
∴.
25. 某校七年级一班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9元;如果在学校自己刻录,除租用一台刻录机需要100元外,每张光盘还需要成本费5元.
(1)完成表格:
(2)设刻录光盘x张,当x取何值时,到电脑公司刻录与学校自己刻录所需费用一样?
(3)如果七年级一班共有学生36人,每人一张,那么选择到电脑公司刻录和学校自己刻录哪种方式更合算?
【答案】(1)180,270,150,250;
(2)刻录25张光盘时,到电脑公司刻录与学校自己刻录所需费用一样;
(3)选择学校自己刻录更合算.
(1)
解:到电脑公司刻录20张的收费:(元),
到电脑公司刻录30张的收费:(元),
学校自己刻录10张的收费:(元),
学校自己刻录30张的收费:(元),
故填表如下:
故答案为180,270,150,250;
(2)
解:设刻录x张光盘时,到电脑公司刻录与学校自己刻录所需费用一样,得方程
解得
答:刻录25张光盘时,到电脑公司刻录与学校自己刻录所需费用一样.
(3)
解:当时,;
∴
∴当学生有36人,每人一张时,选择学校自己刻录更合算.刻录光盘(张)
10
20
30
…
电脑公司刻录收费(元)
90
…
学校自己刻录收费(元)
200
…
刻录光盘(张)
10
20
30
…
电脑公司刻录收费(元)
90
180
270
…
学校自己刻录收费(元)
150
200
250
…
2023-2024学年天津市部分区七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年天津市部分区七年级(上)期末数学试卷(含解析),共13页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
天津市部分区2022-2023学年七年级上学期期末练习数学试卷(含解析): 这是一份天津市部分区2022-2023学年七年级上学期期末练习数学试卷(含解析),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
天津市部分区2022-2023学年七年级上学期期中练习数学试卷(含答案): 这是一份天津市部分区2022-2023学年七年级上学期期中练习数学试卷(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。