年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册

    立即下载
    加入资料篮
    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册第1页
    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册第2页
    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册第3页
    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册第4页
    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册第5页
    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册第6页
    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册第7页
    新教材2023版高中数学第五章计数原理1基本计数原理1.1分类加法计数原理1.2分步乘法计数原理课件北师大版选择性必修第一册第8页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学选择性必修 第一册第五章 计数原理1 基本计数原理1.2 分步乘法计数原理背景图ppt课件

    展开

    这是一份数学选择性必修 第一册第五章 计数原理1 基本计数原理1.2 分步乘法计数原理背景图ppt课件,共32页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,m1+m2++mn,m1·m2··mn,答案C,答案D,答案16,答案15,易错警示,答案B等内容,欢迎下载使用。
    [教材要点]要点一 分类加法计数原理完成一件事,可以有n类办法,在第1类办法中有m1种方法,在第2类办法中有m2种方法……在第n类办法中有mn种方法.那么,完成这件事共有N=__________________种方法.(也称“加法原理”)
    状元随笔 应用分类加法计数原理解题时要注意以下三点: 第一,明确题目中“完成一件事”所指的是什么事,怎么才算是完成这件事,完成这件事可以有哪些办法. 第二,完成这件事的N种方法是相互独立的,无论哪类办法中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法. 第三,确立恰当的分类标准,准确地对“这件事”进行分类,要求每一种方法必属于某一类办法,不同类办法的任意两种方法是不同的方法,也就是分类必须既“不重复”也“不遗漏”.
    要点二 分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有mn种不同的方法.那么,完成这件事共有N=__________________种方法.(也称“乘法原理”)
    状元随笔 应用分步乘法计数原理要注意的问题: (1)明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某一步骤的某种方法是不能完成这件事的,也就是说必须要经过几步才能完成这件事. (2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步骤,这件事都不可能完成. (3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏.
    [基础自测]1.思考辨析(正确的画“√”,错误的画“×”)(1)在分类加法计数原理中,某两类不同方案中的方法可以相同. (  )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事. (  )(3)在分步乘法计数原理中,只有各步骤都完成后,这件事情才算完成.(  )(4)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(  )
    2.从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有(  )A.3种 B.4种C.7种 D.12种
    解析:由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.
    3.已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为(  )A.10个 B.6个C.8个 D.9个
    解析:因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.
    4.某商场共有4个门,购物者若从任意一个门进,从任意一个门出,则不同走法的种数是________.
    解析:不同的走法可以看作是两步完成的,第一步是进门共有4种;第二步是出门,共有4种.由分步乘法计数原理知共有4×4=16(种).
    题型一 分类加法计数原理的应用例1 (1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?
    解析:(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.(2)方法一 按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).方法二 按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).
    方法归纳1.应用分类加法计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.(3)方法独立:确定的每一类方法必须能独立地完成这件事.
    2.利用分类加法计数原理解题的一般思路
    跟踪训练1 (1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有(  )A.1种 B.2种C.3种 D.4种
    解析:分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.
    (2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.
    解析:有三类不同方案:第一类,从第1个袋子中任取1个红色小球,有6种不同的取法;第二类,从第2个袋子中任取1个白色小球,有5种不同的取法;第三类,从第3个袋子中任取1个黄色小球,有4种不同的取法.其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.
    题型二 分步乘法计数原理的应用例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)? 
    解析:按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.
    方法归纳1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.
    跟踪训练2 张老师要从教学楼的一层走到三层,已知从一层到二层有4个扶梯可走,从二层到三层有2个扶梯可走,则张老师从一层到三层有多少种不同的走法?
    解析:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,张老师从教学楼的一层到三层的不同走法有4×2=8(种).
    题型三 两个计数原理的应用 例3 现有高一四个班的学生34人,其中一、二、三、四班各有7人、8人、9人、10人,他们自愿组成数学课外小组. (1)选其中一人为负责人,有多少种不同的选法? (2)每班选一名组长,有多少种不同的选法? (3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?
    解析:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一人任组长. 由分步乘法计数原理知共有不同的选法N=7×8×9×10=5 040(种). (3)分六类,每类又分两步.从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.由分类加法计数原理知共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
    方法归纳1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是对于较复杂应用问题的元素分成互相排斥的几类,逐类解决,用分类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
    跟踪训练3 某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?
    解析:(1)小明爸爸选凳子可以分两类:第一类,选东面的空闲凳子,有8种坐法;第二类,选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14种坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14个凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182种坐法.
    易错辨析 因忽视限制条件而致误例4 有3张卡片的正、反两面上分别写有1和2,4和5,8和9,将它们并排组成三位数,其有多少个不同的三位数?
    解析:分三步进行:第一步:确定个位上数字有6种选法.第二步:确定十位上数字,因个位上数字已定,其反面数字不能选取,只能从剩余的2张卡片中选取,有4种选法.第三步:确定百位上数字,只能从剩余的1张卡片中选取,有2种选法.由分步乘法计数原理知,其有6×4×2=48(个)不同的三位数.
    [课堂十分钟]1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为(  )A.7 B.12C.64 D.81
    解析:先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.
    2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为(  )A.1+1+1=3 B.3+4+2=9C.3×4×2=24 D.以上都不对
    解析:分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.
    3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.
    解析:产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.
    4.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.
    解析:经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.

    相关课件

    高中数学6.1 分类加法计数原理与分步乘法计数原理授课课件ppt:

    这是一份高中数学6.1 分类加法计数原理与分步乘法计数原理授课课件ppt,共35页。PPT课件主要包含了目录索引,m+n,m×n,不同方法,“分类”,相互独立,“分步”,互相依存,本节要点归纳等内容,欢迎下载使用。

    北师大版 (2019)选择性必修 第一册第五章 计数原理1 基本计数原理1.2 分步乘法计数原理教学演示课件ppt:

    这是一份北师大版 (2019)选择性必修 第一册第五章 计数原理1 基本计数原理1.2 分步乘法计数原理教学演示课件ppt,共35页。PPT课件主要包含了目录索引,本节要点归纳等内容,欢迎下载使用。

    北师大版 (2019)选择性必修 第一册1.2 分步乘法计数原理作业课件ppt:

    这是一份北师大版 (2019)选择性必修 第一册1.2 分步乘法计数原理作业课件ppt,共24页。PPT课件主要包含了×10n-1等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map