甘肃省定西市陇西县2020-2021学年四年级下学期期末数学试卷
展开
这是一份甘肃省定西市陇西县2020-2021学年四年级下学期期末数学试卷,共17页。试卷主要包含了填空,判断,选择题,计算,操作题,解决问题等内容,欢迎下载使用。
1.(2分)小数0.75的计数单位是 ,它有 个这样的计数单位.
2.(5分)2.8中的“2”在 位上,表示 个 。如果想让“8”在百分位上,小数点需要向 移动 位。
3.(1分)一个房顶的形状是等腰三角形,已知一个底角30°,它的顶角度数是 .
4.(1分)绘制2016年成都市5月份平均气温变化情况,绘制 统计图比较合适。
5.(2分)2.5扩大到原来的 倍是250,68缩小到原来的 是0.068.
6.(5分)5千克20克= 千克
15米6厘米= 米
6.25米= 米 分米 厘米
7.(1分)把2.65、2.56、2.065、2.605按从小到大的顺序排列,排在第二位的是 .
8.(1分)用字母表示乘法的分配律 .
9.(1分)0.874×0.25的积是 位小数。
10.(1分)把一个大三角形剪成两个小三角形,每个小三角形的内角和是 .
11.(1分)张师傅加工了a个零件,李师傅加工的零件比张师傅的2倍少4个,李师傅加工了 个零件。
12.(1分)甲、乙两数的和是88,丙数是71,则甲、乙、丙三数的平均数是 。
二、判断。(每小题1分,共5分)
13.(1分)把3.6×5.78中乘数的小数点都去掉,积会比原来扩大1000倍.
14.(1分)三角形如果有两个角是锐角,就一定是锐角三角形. .
15.(1分)小数点后面添上“0”或者去掉“0”,小数的大小不变。
16.(1分)9.9×1.7=10×1.7﹣0.1×1.7。
17.(1分)有一组对边平行的四边形叫做梯形. .
三、选择题。(每小题1分,共5分)
18.(1分)下面各式中是方程的是( )
A.x﹣1>2B.7+xC.3x﹣3=0D.3×12=4×9
19.(1分)三根同样长的木棒可以摆成( )
A.钝角三角形B.直角三角形
C.锐角三角形
20.(1分)下面各式中,积最小的是( )
A.0.51×203B.5.1×2.03
C.0.051×20300
21.(1分)—个数除以a,商3余1,这个数是( )
A.3a+1B.(a﹣1)÷3C.3a﹣1
22.(1分)下面的物体,从正面看到的形状是( )
A.B.C.
四、计算(38分)
23.(10分)直接写出得数.
24.(8分)竖式计算。
9.32×0.35=
9.6+4.78=
6.03×3.3=
20﹣8.75=
25.(12分)简算下列各题。
12.5×5.6×0.8=
16.75﹣3.43﹣0.57=
0.46×1.9+0.54×1.9=
1.8×0.99=
26.(8分)解方程。
3x+3.6=7.89
4x﹣12=8
x+0.8=4.5
12x=48
五、操作题。(第1小题1分,第3小题3分,其余每空0.5分,共8分)
27.(8分)小平、小青、小华、小玲与小敏5名学生踢毽子的成绩分别是:40个,35个,25个,50个,45个。将他们的成绩绘制成条形统计图,并回答问题。
(1)图中一格表示 个。
(2) 踢得最多, 踢得最少,相差 个。
(3)这五名同学踢毽子的平均成绩是多少?
六、解决问题(共20分)
28.(4分)蔬菜摊主运来茄子28.3千克,比运来的黄瓜少3.6千克,蔬菜摊主运来黄瓜多少千克?
29.(4分)地球表面积是5.1亿平方千米,其中陆地面积是1.49亿平方千米.海洋面积比陆地面积多多少亿平方千米?
30.(4分)王伯伯家今年种了60棵苹果树,平均每棵树能摘180.5千克苹果,每千克苹果售价6.5元。王伯伯家今年出售苹果的收入是多少元?
31.(4分)一张桌子售价81.5元,比一把椅子的售价的3倍多5元,一把椅子售价多少元?(用方程解答)
32.(4分)一个长方形的花园,它的周长是60米,长是20米,那么它的宽是多少米?(用方程解答)
2020-2021学年甘肃省定西市陇西县四年级(下)期末数学试卷
参考答案与试题解析
一、填空(每空1分,共22分)。
1.(2分)小数0.75的计数单位是 百分之一 ,它有 75 个这样的计数单位.
【分析】根据数位表可知,小数的小数部分从左到右的计算单位依次是十分之一,百分之一,千分之一…;用数的大小除以计算单位就是含有该计数单位的个数.
【解答】解:小数0.75的计数单位是百分之一,它含有75个这样的计数单位;
故答案为:百分之一,75.
【点评】此题考查了小数的计算单位的应用.
2.(5分)2.8中的“2”在 个 位上,表示 2 个 一 。如果想让“8”在百分位上,小数点需要向 左 移动 一 位。
【分析】根据数位顺序表,找出数字2所在的数位,再根据该数位上计数单位进行求解;原来8在十分位上,要想让“8”在百分位上,小数点需要向 左移动 一位;由此解答即可。
【解答】解:2.8中的“2”在个位上,表示2个一。如果想让“8”在百分位上,小数点需要向左移动一位。
故答案为:个,2,一,左,一。
【点评】本题主要考查小数的计数单位,关键是熟记小数的数位顺序表。
3.(1分)一个房顶的形状是等腰三角形,已知一个底角30°,它的顶角度数是 120° .
【分析】因为等腰三角形的两个底角相等,所以另一个底角也是30°,由此利用三角形的内角和是180°,即可求出顶角的度数.
【解答】解:180°﹣30°×2,
=180°﹣60°,
=120°,
答:它的顶角是120°.
故答案为:120°.
【点评】此题考查了等腰三角形的性质和三角形内角和定理的应用.
4.(1分)绘制2016年成都市5月份平均气温变化情况,绘制 折线 统计图比较合适。
【分析】条形统计图能很容易看出数量的多少;
折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;
扇形统计图能反映部分与整体的关系,由此根据情况选择即可。
【解答】解:绘制2016年成都市5月份平均气温变化情况,绘制折线统计图比较合适。
故答案为:折线。
【点评】本题主要考查了统计图的选择,需要学生熟悉各种统计图的特点,并做出最优选择。
5.(2分)2.5扩大到原来的 100 倍是250,68缩小到原来的 是0.068.
【分析】小数点的移动引起小数的大小变化的规律:一个小数的小数点向左移动一位,这个小数就缩小了10倍;移动两位,这个小数就缩小了100倍;移动三位,这个小数就缩小了1 000倍…;同理,如果一个小数的小数点向右移动一位,这个小数就扩大了10倍;移动两位,这个小数就扩大了100倍;移动三位,这个小数就扩大了1 000倍…;据此解答即可.
【解答】解:2.5扩大到原来的 100倍是250,68缩小到原来的是0.068.
故答案为:100,.
【点评】此题主要考查小数点位置移动引起数的大小变化规律的灵活应用.
6.(5分)5千克20克= 5.02 千克
15米6厘米= 15.06 米
6.25米= 6 米 2 分米 5 厘米
【分析】1千克=1000克,1米=100厘米,根据低级单位换算成高级单位用除法计算,高级单位换算成低级单位用乘法计算完成填空。
【解答】解:5千克20克=5.02千克
15米6厘米=15.06米
6.25米=6米2分米5厘米
故答案为:5.02;15.06;6,2,5。
【点评】本题考查质量单位和长度单位之间的换算,要牢记这些单位之间的进率和换算规则。
7.(1分)把2.65、2.56、2.065、2.605按从小到大的顺序排列,排在第二位的是 2.56 .
【分析】直接根据小数大小比较的方法进行比较,即,先看它们的整数部分,整数大的那个数就大;如果整数部分相同,十分位大的那个数就大.如果十分位上的那个数也相同,百分位上的数大的那个数就大,依次比较下去,直到比较出大小为止.
【解答】解:2.065<2.56<2.605<2.65,
所以按从小到大的顺序排列,排在第二位的是2.56.
故答案为:2.56.
【点评】此题主要是掌握小数大小比较的方法.
8.(1分)用字母表示乘法的分配律 (a+b)c=ac+bc .
【分析】设两个加数是a和b,用它们的和乘c,与两个数a、b分别乘c再相加的和是相等的.
【解答】解:用字母表示乘法的分配律为:(a+b)×c=a×c+b×c,即(a+b)c=ac+bc.
故答案为:(a+b)c=ac+bc.
【点评】此题主要考查了乘法的分配律,即两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(或减数)相乘,再把两个积相加(或相减),得数不变.
9.(1分)0.874×0.25的积是 四 位小数。
【分析】依据积的小数位数等于两个因数小数位数的和解答。
【解答】解:在计算0.874×0.25时,两个乘数一共有五位小数,所以积有五位小数,但由于小数末尾的0要去掉,所以积有四位小数。
故答案为:四。
【点评】本题考查的知识点是:积的小数位数等于两个因数小数位数的和,乘积末尾有0时要去掉。
10.(1分)把一个大三角形剪成两个小三角形,每个小三角形的内角和是 180° .
【分析】根据三角形的内角和等于180°即可求解.
【解答】解:因为三角形的内角和等于180°,
所以每个小三角形的内角和也是180°.
故答案为:180°.
【点评】本题考查了三角形内角和定理:三角形的内角和等于180°.
11.(1分)张师傅加工了a个零件,李师傅加工的零件比张师傅的2倍少4个,李师傅加工了 (2a﹣4) 个零件。
【分析】首先分析条件“李师傅加工的零件比张师傅的2倍少4个”,则张师傅加工的数量×2﹣4就是李师傅加工零件的个数。
【解答】解:a×2﹣4=2a﹣4(个)
答:李师傅加工了(2a﹣4)个零件。
故答案为:(2a﹣4)。
【点评】做这道题的关键是要弄清“求一个数的n倍是多少,要用乘法计算”。
12.(1分)甲、乙两数的和是88,丙数是71,则甲、乙、丙三数的平均数是 53 。
【分析】用甲、乙两数的和加上丙数71后,除以3就是这三个数的平均数。
【解答】解:(88+71)÷3
=159÷3
=53
答:甲、乙、丙三数的平均数是53。
故答案为:53。
【点评】解答此题的关键是求出3个数的和。
二、判断。(每小题1分,共5分)
13.(1分)把3.6×5.78中乘数的小数点都去掉,积会比原来扩大1000倍. √
【分析】3.6去掉小数点扩大了10倍,5.78去掉小数点扩大了100倍,然后根据积的变化规律,一个因数扩大10倍,另一个因数扩大100倍,那么积就会扩大1000倍.
【解答】解:3.6去掉小数点扩大了10倍,
5.78去掉小数点扩大了100倍,
所以积就扩大10×100=1000倍;
所以把3.6×5.78中乘数的小数点都去掉,积会比原来扩大1000倍说法正确.
故答案为:√.
【点评】此题主要考查的是积的变化规律及积的变化规律的应用.
14.(1分)三角形如果有两个角是锐角,就一定是锐角三角形. × .
【分析】三角形按角分可分为:锐角三角形,即三角形的三个角都是锐角的三角形;直角三角形,即有一个角是直角的三角形;钝角三角形,即有一个角是钝角的三角形.可见锐角三角形是由三个角决定的,直角三角形和钝角三角形是由一个直角或一个钝角决定的,因此两个锐角不能决定是什么三角形.
【解答】解:一个三角形如果有两个锐角,另一个角可能是锐角,也可能是直角,还可能是钝角,
因此,这个三角形不一定是什么三角形.
故答案为:×.
【点评】本题是考查三角形的分类,注意:两个锐角不能决定是什么三角形.
15.(1分)小数点后面添上“0”或者去掉“0”,小数的大小不变。 ×
【分析】小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变;据此判断。
【解答】解:在小数点后面添上“0”或者去掉“0”,小数的大小可能会变。
例如:1.03≠1.3,11.2≠11.002
所以原题说法错误。
故答案为:×。
【点评】本题考查小数的性质,关键是明白“小数的末尾”和“小数点后面”的区别。
16.(1分)9.9×1.7=10×1.7﹣0.1×1.7。 √
【分析】根据乘法分配律解答。
【解答】9.9×1.7
=(10﹣0.1)×1.7
=10×1.7﹣0.1×1.7
故答案为:√。
【点评】掌握乘法分配律是解题关键。
17.(1分)有一组对边平行的四边形叫做梯形. × .
【分析】根据梯形的含义可知:只有一组对边平行的四边形,叫做梯形;可知有一组对边平行的四边形,不一定是梯形,要强调“只有”;因为平行四边形、长方形、正方形都会有一组对边平行的;进而判断即可.
【解答】解:根据梯形的含义可知:有一组对边平行的四边形叫做梯形,说法错误;
故答案为:×.
【点评】解答此题应根据梯形的含义进行解答,应注意数学语言的严谨性.
三、选择题。(每小题1分,共5分)
18.(1分)下面各式中是方程的是( )
A.x﹣1>2B.7+xC.3x﹣3=0D.3×12=4×9
【分析】含有未知数的等式叫做方程;根据方程的意义逐项分析后再选择.
【解答】解:A、x﹣1>2,是含有未知数的不等式,所以不是方程;
B、7+x,只是含有未知数的式子,不是等式,所以不是方程;
C、3x﹣3=0,是含有未知数的等式,所以是方程;
D、3×12=4×9,只是等式,没含有未知数,所以不是方程.
故选:C.
【点评】此题主要考查根据方程的意义来辨识方程,明确只有含有未知数的等式才是方程,否则就不是方程.
19.(1分)三根同样长的木棒可以摆成( )
A.钝角三角形B.直角三角形
C.锐角三角形
【分析】三根同样长的木棒可以摆成一个等边三角形,再根据等边三角形的特征:三条边都相等,三个角都是60度;进而得出结论.
【解答】解:根据等边三角形的特征可知:三根同样长的小棒可以摆成一个等边三角形,等边三角形内角都是60度,那么这个三角形就是一个锐角三角形.
故选:C.
【点评】此题考查了等边三角形的特征和三角形的分类.
20.(1分)下面各式中,积最小的是( )
A.0.51×203B.5.1×2.03
C.0.051×20300
【分析】本题可结合选项B中的算式,根据积的变化规律进行分析即可.
【解答】解:选项B中的算式为:5.1×2.03,
选项A,由于0.51×203,即相对于选项B中的算式,2.03扩大了100倍,5.1缩小了10倍,则它们的积扩大100÷10=10倍,
选项C,由于0.051×20300,即相对于选项B中的算式,20300扩大了10000倍,5.1缩小了10倍,则它们的积扩大10000÷100=100倍.
所以算式B的积最小.
故选:B.
【点评】在乘法算式中,其中一个因数扩大(或缩小)若干倍(零除外),另一个因数不变,则它们的积也要相应的扩大(或缩小)相同的倍数.
21.(1分)—个数除以a,商3余1,这个数是( )
A.3a+1B.(a﹣1)÷3C.3a﹣1
【分析】一个数除以a,商3余1,则在这个有余数除法算式中,a是除数,未知的数是被除数;根据有余数除法中各数之间的关系可知:被除数=商×除数+余数,据此解题。
【解答】解:若一个数除以a,商3余1,则这个数是3a+1。
故选:A。
【点评】本题考查用字母表示数,准确理解题意并掌握有余数除法中各数之间的关系是关键。
22.(1分)下面的物体,从正面看到的形状是( )
A.B.C.
【分析】观察图形可知,从正面看到的图形是2层:下层3个正方形,上层1个正方形靠左边,据此即可选择.
【解答】解:根据题干分析可得,从正面看到的图形是,
故选:A.
【点评】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.
四、计算(38分)
23.(10分)直接写出得数.
【分析】根据小数乘除法和小数加减法的计算方法进行计算.
【解答】
【点评】本题主要考查了学生小数乘除法和加减法的计算能力.
24.(8分)竖式计算。
9.32×0.35=
9.6+4.78=
6.03×3.3=
20﹣8.75=
【分析】计算小数加法、减法:先把各数的小数点对齐(也就是把相同数位上的数对齐);再按照整数加法、减法的法则进行计算,最后在得数里对齐横线上的小数点,点上小数点(得数的小数部分末尾有0,一般要把0去掉)。
小数乘小数的计算方法,先按照整数乘法的计算方法计算,再看因数中共有几位小数,就从积的右边起数出几位点上小数点。
【解答】解:9.32×0.35=3.262
9.6+4.78=14.38
6.03×3.3=19.899
20﹣8.75=11.25
【点评】本题主要考查了小数加法、小数减法、小数乘法的竖式计算方法,注意计算的准确性。
25.(12分)简算下列各题。
12.5×5.6×0.8=
16.75﹣3.43﹣0.57=
0.46×1.9+0.54×1.9=
1.8×0.99=
【分析】(1)按照乘法交换律计算;
(2)按照减法的性质计算;
(3)按照乘法分配律计算;
(4)按照乘法分配律计算。
【解答】解:(1)12.5×5.6×0.8
=12.5×0.8×5.6
=10×5.6
=56
(2)16.75﹣3.43﹣0.57
=16.75﹣(3.43+0.57)
=16.75﹣4
=12.75
(3)0.46×1.9+0.54×1.9
=1.9×(0.46+0.54)
=1.9×1
=1.9
(4)1.8×0.99
=1.8×(1﹣0.01)
=1.8×1﹣1.8×0.01
=1.8﹣0.018
=1.782
【点评】本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算。
26.(8分)解方程。
3x+3.6=7.89
4x﹣12=8
x+0.8=4.5
12x=48
【分析】等式两边同时加减同一个数,仍是等式。等式两边同乘或除以一个不为零的数,仍是等式。
【解答】解:3x+3.6=7.89
3x=7.89﹣3.6
3x=4.29
x=1.43
4x﹣12=8
4x=12+8
4x=20
x=20÷4
x=5
x+0.8=4.5
x=4.5﹣0.8
x=3.7
12x=48
x=48÷12
x=4
【点评】掌握等式的性质和比例的性质是解方程关键。
五、操作题。(第1小题1分,第3小题3分,其余每空0.5分,共8分)
27.(8分)小平、小青、小华、小玲与小敏5名学生踢毽子的成绩分别是:40个,35个,25个,50个,45个。将他们的成绩绘制成条形统计图,并回答问题。
(1)图中一格表示 5 个。
(2) 小玲 踢得最多, 小华 踢得最少,相差 25 个。
(3)这五名同学踢毽子的平均成绩是多少?
【分析】首先根据数据,完成条形统计图即可。
(1)根据统计图可知,图中一格表示5个。
(2)比较小平、小青、小华、小玲与小敏5名学生踢毽子的成绩,解答即可。
(3)根据平均数的求法,用5名学生踢毽子的成绩之和除以5,解答即可。
【解答】解:如图:
(1)图中一格表示5个。
(2)50>45>40>35>25
50﹣25=25(个)
答:小玲踢得最多,小华踢得最少,相差25个。
(3)(40+35+25+50+45)÷5
=195÷5
=39(个)
答:这五名同学踢毽子的平均成绩是39个。
故答案为:5;小玲,小华,25。
【点评】本题考查了条形统计图的整理和分析知识,结合题意分析解答即可。
六、解决问题(共20分)
28.(4分)蔬菜摊主运来茄子28.3千克,比运来的黄瓜少3.6千克,蔬菜摊主运来黄瓜多少千克?
【分析】用28.3千克加上3.6千克,即可求出运来黄瓜多少千克。
【解答】解:28.3+3.6=31.9(千克)
答:蔬菜摊主运来黄瓜31.9千克。
【点评】本题考查了利用小数加法解决问题,需准确理解题意。
29.(4分)地球表面积是5.1亿平方千米,其中陆地面积是1.49亿平方千米.海洋面积比陆地面积多多少亿平方千米?
【分析】地球表面积是5.1亿平方千米,其中陆地面积是1.49亿平方千米,可知海洋面积是5.1﹣1.49=3.61亿平方千米,求海洋面积比陆地面积多多少亿平方千米,就用海洋面积数减去陆地面积数.
【解答】解:5.1﹣1.49﹣1.49
=3.61﹣1.49
=2.12(亿平方千米)
答:海洋面积比陆地面积多2.12亿平方千米.
【点评】对于这类题目,先求出未知量,再把这两个数量进行比较即可.
30.(4分)王伯伯家今年种了60棵苹果树,平均每棵树能摘180.5千克苹果,每千克苹果售价6.5元。王伯伯家今年出售苹果的收入是多少元?
【分析】先用60乘180.5,求出苹果总千克数;再乘6.5,即可求出王伯伯家今年出售苹果的收入是多少元。
【解答】解:60×180.5×6.5
=10830×6.5
=70395(元)
答:王伯伯家今年出售苹果的收入是70395元。
【点评】解答本题需熟练掌握单价、总价和数量之间的关系。
31.(4分)一张桌子售价81.5元,比一把椅子的售价的3倍多5元,一把椅子售价多少元?(用方程解答)
【分析】设一把椅子售价x元,根据等量关系:一把椅子的售价×3+5元=一张桌子售价81.5元,列方程解答即可.
【解答】解:设一把椅子售价x元,
3x+5=81.5
3x=76.5
x=25.5
答:一把椅子售价25.5元.
【点评】本题考查了列方程解应用题,关键是根据等量关系:一把椅子的售价×3+5元=一张桌子售价81.5元,列方程.
32.(4分)一个长方形的花园,它的周长是60米,长是20米,那么它的宽是多少米?(用方程解答)
【分析】设它的宽为x米,根据长方形的周长=(长+宽)×2列方程即可。
【解答】解:设它的宽为x米。
(20+x)×2=60
20+x=30
x=10
答:它的宽为10米。
【点评】解答此题的关键是熟知长方形的周长公式,即:长方形的周长=(长+宽)×2。
5.8﹣4=
3.8+0.12=
3.1×0.03=
0.25+0.75=
2.1﹣2.01=
8﹣2.5=
3.7×100=
0.5÷10=
30÷1000=
5.8﹣4=
3.8+0.12=
3.1×0.03=
0.25+0.75=
2.1﹣2.01=
8﹣2.5=
3.7×100=
0.5÷10=
30÷1000=
解:5.8﹣4=1.8
3.8+0.12=3.92
3.1×0.03=0.093
0.25+0.75=1
2.1﹣2.01=0.09
8﹣2.5=5.5
3.7×100=370
0.5÷10=0.05
30÷1000=0.03
相关试卷
这是一份甘肃省定西市陇西县2020-2021学年二年级下学期期末数学试卷,共12页。试卷主要包含了小小填空知识多,快来动手做一做,我是小小审判员,计算;,列式计算,操作题,解决问题等内容,欢迎下载使用。
这是一份甘肃省定西市陇西县2020-2021学年二年级下学期期末数学试卷,共12页。试卷主要包含了小小填空知识多,快来动手做一做,我是小小审判员,计算;,列式计算,操作题,解决问题等内容,欢迎下载使用。
这是一份甘肃省定西市陇西县2022-2023学年二年级上学期期末数学试题,共2页。试卷主要包含了认真思考,我会填,我是小小裁判员,我会选,小小神算手,我认识,我会画,有问题我来解等内容,欢迎下载使用。