终身会员
搜索
    上传资料 赚现金

    专题06 巧用零点值妙杀绝对值类压轴题-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题06 巧用零点值妙杀绝对值类压轴题(原卷版).docx
    • 解析
      专题06 巧用零点值妙杀绝对值类压轴题(解析版).docx
    专题06 巧用零点值妙杀绝对值类压轴题(原卷版)第1页
    专题06 巧用零点值妙杀绝对值类压轴题(原卷版)第2页
    专题06 巧用零点值妙杀绝对值类压轴题(原卷版)第3页
    专题06 巧用零点值妙杀绝对值类压轴题(解析版)第1页
    专题06 巧用零点值妙杀绝对值类压轴题(解析版)第2页
    专题06 巧用零点值妙杀绝对值类压轴题(解析版)第3页
    还剩5页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题06 巧用零点值妙杀绝对值类压轴题-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版)

    展开

    这是一份专题06 巧用零点值妙杀绝对值类压轴题-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版),文件包含专题06巧用零点值妙杀绝对值类压轴题原卷版docx、专题06巧用零点值妙杀绝对值类压轴题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。


    典例分析:
    学习了绝对值我们知道,a=aa>00a=0−aa<0,用这一结论可化简含有绝对值的代数式.如化简代数式x+1+x−3时,可令x+1=0和x−3=0,分别求得x=−1和x=3,我们就称−1和3分别为x+1|和x−3|的零点值在有理数范围内,零点值x=−1,x=3可将全体有理数分成不重复、不遗漏的五个部分,可在演草本上画出数轴,找到对应的部分然后进行分类讨论如下:
    ①当x<−1时,原式=−x−1+−x−3=2−2x;
    ②当x=−1时,原式=4;
    ③当−1④当x=3时,原式=4;
    ⑤当x>3时,原式=x+1+x−3=2x−2.
    综上所述,原式=2−2xx<−14−1≤x≤32x−2x>3,以上这种分类讨论化简方法就叫零点分段法,其步骤是:求零点、分段、区段内化简、综合,根据以上材料解决下列问题:
    (1)化简代数式x−1−2x+2;
    (2)x−1−2x+2的最大值是 .(请直接写出结果)
    【答案】(1)原式=−x−5x≥1−3x−3−2(2)3
    【详解】(1)当x≥1时,原式=x−1−2x+2=x−1−2x−4=−x−5;
    当−2当x≤−2时,原式=1−x+2x+2=1−x+2x+4=x+5;
    综上所述:原式=−x−5x≥1−3x−3−2(2)当x≥1时,原式的最大值=0−2×3=−6;
    当x≤−2时,原式的最大值=3−0=3;
    ∴x−1−2x+2的最大值为3.
    故答案是3.
    实战训练:
    一、单选题
    1.计算x−1+x+2的最小值为( )
    A.0B.1C.2D.3
    2.已知 x 是正实数,则 ∣x−1∣+∣2x−1∣+∣3x−1∣+∣4x−1∣+∣5x−1∣ 的最小值是( )
    A.2B.74C.53D.0
    二、填空题
    3.数轴上表示x和−2的两点A和B之间的距离是 ,若AB=1,则x为 ;当代数式|x+2|+|x−3|取最小值时,相应的x的取值范围是 .
    4.已知a,b是有理数,若b=1−a+2,则b的最小值为 .
    5.当a= 时,|a−1|+4有最小值. 最小值是 .
    三、解答题
    6.数学实验室:
    点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=a−b.

    利用数形结合思想回答下列问题:
    (1)数轴上表示3和6两点之间的距离是______,数轴上表示1和−5的两点之间的距离是______.
    (2)数轴上表示x和−2的两点之间的距离表示为______.数轴上表示x和7的两点之间的距离表示为______.
    (3)若x表示一个有理数,则x−2+x+4的最小值=______.
    (4)若x表示一个有理数,且x+1+x−4=5,则满足条件的所有整数x的是______.
    (5)若x表示一个有理数,当x为______时,式子x+1+x+2+x+3+x+4+x+5有最小值为______.
    7.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|,
    当A、B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=b=a−b,

    当A、B两点都不在原点时,
    ①如图2,点A、B都在原点的右边AB=OB−OA=b−a=b−a=a−b;
    ②如图3,点A、B都在原点的左边AB=OB−OA=b−a=b−a=a−b;
    ③如图4,点A、B在原点的两边,AB=OB−OA=b−a=−b−−a=a−b;
    综上,数轴上A、B两点之间的距离AB=a−b.
    (2)回答下列问题:
    ①数轴上表示2和5的两点之间的距离是_______,数轴上表示1和−3的两点之间的距离是_______.
    ②数轴上表示x和−1的两点A和B之间的距离是_______,如果AB=2,那么x为_______.
    (3)探索规律:
    ①当x−1+x−2有最_______(填“大”或“小”)值是_______;
    ②当x−1+x−2+x−3有最小_______(填“大”或“小”)值是_______;
    ③当x−1+x−2+x−3+x−4有最_______(填“大”或“小”)值是_______.
    (4)规律应用
    工厂加工车间工作流水线上依次间隔2米排着9个工作台A、B、C、D、E、F、G、H、I,一只配件箱应该放在工作_______处,能使工作台上的工作人员取配件所走的路程最短,最短路程是_______米.
    (5)知识迁移
    x+4−x−5有最值(最大值或最小值)吗?如果有,请直接写出你的答案.
    8.数形结合是初中数学的重要思想方法之一,我们知道∣7−(−1)∣表示7与−1之差的绝对值,也可理解为7与−1两数在数轴上所对应的两点之间的距离,又如∣a−6∣的几何意义是数轴上表示实数a的点与表示有理数6的点之间的距离.试探索:
    (1)代数式∣a−3∣+∣a+1∣的最小值为 ,满足代数式取得最小值的正整数a有 个.
    (2)若∣a+2∣+∣a−3∣=7,则a= .
    (3)已知整数a,b,c满足(∣a−1∣+∣a+1∣)(∣b−2∣+∣b+3∣)(∣c−2∣+∣c+5∣)=110,则代数式a−2b+c的最大值和最小值分别为多少?
    9.结合数轴与绝对值的知识回答下列问题:

    (1)数轴上表示3和2的两点之间的距离是_____;表示−2和1两点之间的距离是_____;一般地,数轴上表示数m和数n的两点之间的距离等于m−n.
    (2)如果x+1=2,那么x=______;
    (3)若a−3=4,b+2=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_____.
    (4)若数轴上表示数a的点位于−3与5之间,则a+3+a−5=_____.
    (5)当a=_____时,a−1+a+5+a−4的值最小,最小值是_____.
    10.同学们都知道,5−−2表示5与−2之差的绝对值,实际上也可理解为5与−2两数在数轴上所对应的两点之间的距离.试探索:
    (1)5−−2=_______;
    (2)若x+5+x−2=7.请找出三个符合条件的整数x,则x=_______;
    (3)当3≤x≤6时,x−3+x−6有最小值,求出其最小值.
    11.数轴上表示数a的点到原点的距离叫做数a的绝对值,记作a.数轴上表示数a的点到表示数b的点的距离记作a−b,如1−3表示数轴上表示数1的点到表示数3的点的距离,1+3=1−−3表示数轴上表示数1的点到表示数−3的点的距离,a−2表示数轴上表示数a的点到表示数2的点的距离.
    根据以上材料,解答下列问题:
    (1)若x−1=x+1,则x=_________,若x−1=x+3,则x=_________;
    (2)若x−2+x+1=3,则x能取到的最小值是_________;最大值是_________;
    (3)若x−2−x+1=3,则x能取到的最大值是_________;
    (4)关于x的式子x−3+x+2的取值范围是_________.
    12.(1)阅读下面材料:
    点A、B在数轴上分别表示实数a、b, A、B两点之间的距离表示为AB.
    当A、B两点中有一点在原点时,不妨设点A在原点,如图甲,AB=OB=|b|=|a−b|;
    当A、B两点都不在原点时:
    ①如图乙,点A、B都在原点的右边,AB=OB−OA=|b|−|a|=b−a=|a−b|;
    ②如图丙,点A、B都在原点的左边,AB=OB−OA=|b|−|a|=−b−(−a)=|a−b|;
    ③如图丁,点A、B在原点的两边,AB=OA+OB=|a|+|b|=a+(−b)=|a−b|.
    综上,数轴上A、B两点之间的距离AB=|a−b|.
    (2)回答下列问题:
    ①数轴上表示2和5的两点之间的距离是______,数轴上表示−2和−5的两点之间的距离是______,数轴上表示1和−3的两点之间的距离是______;
    ②数轴上表示x和−1的两点分别是点A和B,则A、B之间的距离是______,如果|AB|=2,那么x=______;
    ③当代数式|x+2|+|x−5|取最小值时,相应的x的取值范围是______.
    ④当代数式|x−1|+|x+2|+|x−5|取最小值时,相应的x的值是______.
    ⑤当代数式|x−5|−|x+2|取最大值时,相应的x的取值范围是______.
    13.材料阅读:已知点A、B在数轴上分别表示有理数a、b,a−b表示A、B两点之间的距离,如:1−2表示数轴上1与2两点之间的距离,所以数轴上1与2两点之间的距离是1−2=1,式子x−3的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离;同理x−4也可理解为x与4两数在数轴上所对应的两点之间的距离,试探索:
    (1)数轴上表示−2和−5的两点之间的距离是___________.
    (2)数轴上表示x和−1的两点A和B之间的距离是________________,如果AB=2,那么x为________________.
    (3)同理x−1+x+2=3表示数轴上有理数x所对应的点到1和−2所对应的两点距离之和为3,则所有符合条件的整数x是______________.
    (4)若点P表示的数为x,当点P在数轴上什么位置时,x−1+x+3有最小值?如果有,直接写出最小值是多少?
    14.【阅读】5−2表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;5+2可以看作5−−2,表示5与−2的差的绝对值,也可理解为5与−2两数在数轴上所对应的两点之间的距离.请回答下列问题:
    (1)已知a是最大的负整数,b是最小的正整数.请直接写出:a= ,b= ;并求出在数轴上a和b的距离是 ;
    (2)代数式x+8可以表示数轴上有理数x与有理数 所对应的两点之间的距离;若x+8=5,则x= .
    (3)求代数式x+1013+x+504+x−1009的最小值,并求出此时x的值.
    15.阅读下列材料:
    经过有理数运算的学习,我们知道5−3可以表示5与3之差的绝对值,同时也可以理解为5与3两个数在数轴上所对应的两点之间的距离,我们可以把这称之为绝对值的几何意义.同理,5−−2可以表示5与−2之差的绝对值,也可以表示5与−2两个数在数轴上所对应的两点之间的距离.试探究:

    (1)4−1表示数轴上________与________所对应的两点之间的距离.
    (2)x−5表示数轴上有理数x所对应的点到________所对应的点之间的距离;x+2表示数轴上有理数x所对应的点到________所对应的点之间的距离.
    (3)利用绝对值的几何意义,请找出所有符合条件的整数x,使得x+2+x−5=7.这样的整数x有________.
    (4)利用绝对值的几何意义,写出x+3+x−2的最小值为________.
    (5)利用绝对值的几何意义,写出x−1+x+2+x−3的最小值为________.
    16.【定义新知】
    我们知道:式子x−3的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离,因此,若点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离AB=a−b.请根据数轴解决以下问题:
    (1)式子x+2在数轴上的意义是 ;
    (2)x+1+x−3当取最小值时,x可以取整数 ;
    (3)x+1−x−3最大值为 ;
    (4)x+1+x−2+x−6的最小值为 ;
    【解决问题】
    (5)如图,一条笔直的公路边有四个居民区A、B、C、D和市民广场O,居民区A、B、C、D分别位于市民广场左侧5km,左侧1km,右侧1km,右侧3km.现需要在该公路边上建一个便民服务点P,那么这个便民服务点P建在何处,能使服务点P到四个居民区A、B、C、D总路程最短?最短路程是多少?试说明理由.
    四、典例
    17.学习了绝对值我们知道,a=aa>00a=0−aa<0,用这一结论可化简含有绝对值的代数式.如化简代数式x+1+x−3时,可令x+1=0和x−3=0,分别求得x=−1和x=3,我们就称−1和3分别为x+1|和x−3|的零点值在有理数范围内,零点值x=−1,x=3可将全体有理数分成不重复、不遗漏的五个部分,可在演草本上画出数轴,找到对应的部分然后进行分类讨论如下:
    ①当x<−1时,原式=−x−1+−x−3=2−2x;
    ②当x=−1时,原式=4;
    ③当−1④当x=3时,原式=4;
    ⑤当x>3时,原式=x+1+x−3=2x−2.
    综上所述,原式=2−2xx<−14−1≤x≤32x−2x>3,以上这种分类讨论化简方法就叫零点分段法,其步骤是:求零点、分段、区段内化简、综合,根据以上材料解决下列问题:
    (1)化简代数式x−1−2x+2;
    (2)x−1−2x+2的最大值是 .(请直接写出结果)

    相关试卷

    专题03 数轴动点压轴精选(3)新定义类-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版):

    这是一份专题03 数轴动点压轴精选(3)新定义类-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版),文件包含专题03数轴动点压轴精选3新定义类原卷版docx、专题03数轴动点压轴精选3新定义类解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    专题02 数轴动点压轴精选(2)中点类-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版):

    这是一份专题02 数轴动点压轴精选(2)中点类-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版),文件包含专题02数轴动点压轴精选2中点类原卷版docx、专题02数轴动点压轴精选2中点类解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    专题01 数轴动点压轴精选(1)距离类-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版):

    这是一份专题01 数轴动点压轴精选(1)距离类-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版),文件包含专题01数轴动点压轴精选1距离类原卷版docx、专题01数轴动点压轴精选1距离类解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题06 巧用零点值妙杀绝对值类压轴题-2023-2024学年七年级数学上册重难热点提升精讲与实战训练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map