开学活动
搜索
    上传资料 赚现金

    八年级数学上册同步精品讲义(北师大版) 专题1.4勾股定理中的最短路径问题

    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题1.4 勾股定理中的最短路径问题(教师版).docx
    • 学生
      专题1.4 勾股定理中的最短路径问题(学生版).docx
    专题1.4 勾股定理中的最短路径问题(教师版)第1页
    专题1.4 勾股定理中的最短路径问题(教师版)第2页
    专题1.4 勾股定理中的最短路径问题(教师版)第3页
    专题1.4 勾股定理中的最短路径问题(学生版)第1页
    专题1.4 勾股定理中的最短路径问题(学生版)第2页
    专题1.4 勾股定理中的最短路径问题(学生版)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    八年级数学上册同步精品讲义(北师大版) 专题1.4勾股定理中的最短路径问题

    展开

    这是一份八年级数学上册同步精品讲义(北师大版) 专题1.4勾股定理中的最短路径问题,文件包含专题14勾股定理中的最短路径问题教师版docx、专题14勾股定理中的最短路径问题学生版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
    专题1.4 勾股定理中的最短路径问题目标导航1、熟练掌握勾股定理的最短路径问题(主要包含:长方体、圆柱、圆锥、将军饮马等)。2、解决实际问题时,要善于构造直角三角形,把实际问题抽象成几何问题.知识精讲知识点01 最短路径问题平面展开图-最短路径问题几何体中最短路径基本模型如下: 基本思路:将立体图形展开成平面图形,利用两点之间线段最短确定最短路线,构造直角三角形,利用勾股定理求解。【知识拓展1】圆柱有关的最短路径问题【微点拨】计算跟圆柱有关的最短路径问题时,要注意圆柱的侧面展开图为矩形,利用两点之间线段最短结合勾股定理进行求解,注意展开后两个端点的位置,有时候需要用底面圆的周长进行计算,有时候需要用底面圆周长的一半进行计算。要点总结:1)运用勾股定理计算最短路径时,按照展开—定点—连线—勾股定理的步骤进行计算;2)缠绕类题型可以求出一圈的最短长度后乘以圈数。例1.(2022·山东青岛·八年级期末)如图,一个圆桶,底面直径为16cm,高为18cm,则一只小虫从下底点A处爬到上底B处再回到A处,则小虫所爬的最短路径长是(       )(取3)A.60cm B.40cm C.30cm D.20cm【答案】A【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【详解】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短. 由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得cm.∵一只小虫从下底点A处爬到上底B处再回到A处,∴最短路径长为60cm.故选:A.【点睛】本题考查了圆柱侧面展开图的运用,两点之间线段最短的运用,勾股定理的运用.在解答时将圆柱的侧面展开是关键.【即学即练】1.(2022·吉林长春·八年级期末)如图,有一个圆柱,底面圆的直径AB=cm,高BC=10cm,在BC的中点P处有一块蜂蜜,聪明的蚂蚁能够找到距离食物的最短路径,则蚂蚁从点A爬到点P的最短路程为 _____cm.【答案】13【分析】化“曲”为“平”,在平面内,得到两点的位置,再根据两点之间线段最短和勾股定理求解即可.【详解】将圆柱体的侧面展开,如图所示:AB=底面周长=××=12(cm),BP=BC=5(cm),所以AP=(cm),故蚂蚁从A点爬到P点的最短距离为13cm,故答案为:13.【点睛】本题考查最短距离问题,化“曲”为“平”,在平面内,利用两点之间线段最短和勾股定理是常用求解方法.2.(2022·浙江金华初三月考)如图,圆柱底面半径为cm,高为18cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为(  )A.24cm B.30cm C.2cm D.4cm【答案】B【分析】要求圆柱体中两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.【解析】解:圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为cm,∴长方形的宽即是圆柱体的底面周长:2π×=8cm;又∵圆柱高为18cm,∴小长方形的一条边长是6cm;根据勾股定理求得AC=CD=DB=10cm;∴AC+CD+DB=30cm;故选:B.【点睛】本题主要考查了圆柱的计算、平面展开−−路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.【知识拓展2】长方体有关的最短路径问题想【微点拨】计算跟长方体有关的最短路径问题时,要熟悉长方体的侧面展开图,利用两点之间线段最短结合勾股定理进行求解,注意长方体展开图的多种情况和分类讨论。要点总结:1)长方体展开图分类讨论时可按照“前+右”、“前+上”和“左+上”三种情况进行讨论;2)两个端点中有一个不在定点时讨论方法跟第一类相同。例2.(2021·陕西八年级期末)如图,长方体的棱AB长为4,棱BC长为3,棱BF长为2,P为HG的中点,一只蚂蚁从点A出发,沿长方体的表面爬行到点处吃食物,那么它爬行的最短路程是___________.【答案】5【分析】利用平面展开图有3种情况,画出图形利用勾股定理求出MN的长即可.【详解】解:分三种情况:如图1,,如图2,,∴AP=5,如图3,,, 它爬行的最短路程为5,故答案为:5.,【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有3种情况分析得出是解题关键.【即学即练】1.(2022·重庆八年级期中)如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点开始经过个侧面缠绕一圈到达,那么用细线最短需要(   )A.12cm B.10cm C.13cm D.11cm【答案】B【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”,利用勾股定理求出所需结果.【详解】解:如图,将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm), A′B′=6cm,根据两点之间线段最短,由勾股定理得:AB′2=AA′2+A′B′2=82+62=102cm,所以AB′=10 cm.故选:B.【点睛】本题考查了平面展开−最短路径问题,本题的关键是把长方体的侧面展开“化立体为平面”,构造直角三角形运用勾股定理解决.2.(2022·陕西咸阳·八年级期末)如图,在长方体的顶点G处有一滴糖浆,棱AE上的P处的蚂蚁想沿长方体表面爬到容器G处吃糖浆,已知容器长AB=5cm,宽AD=4cm,高AE=4cm,AP=1cm,那么蚂蚁需爬行的最短距离是______cm.(结果保留根号)【答案】【分析】求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:∵AE=4cm,AP=1cm,∴PE=3cm,如图1, ∴PH=3+4=7(cm),∴PG=(cm);如图2,∴PG=(cm);如图3∴PG=(cm),故蚂蚁需爬行的最短距离是cm.故答案为: .【点睛】本题考查了平面展开﹣最短路径问题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.【知识拓展3】将军饮马与最短路径问题【微点拨】解决线段之和最小值问题:对称+连线,根据两点之间线段最短解决。要点总结:立体图形中从外侧到内侧最短路径问题需要先作对称,再运用两点之间线段最短的原理结合勾股定理求解。例3.(2022·重庆初二月考)圆柱形杯子的高为18cm,底面周长为24cm,已知蚂蚁在外壁A处(距杯子上沿2cm)发现一滴蜂蜜在杯子内(距杯子下沿4cm),则蚂蚁从A处爬到B处的最短距离为( )A. B.28 C.20 D.【答案】C分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解析】如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B= (cm)故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.【即学即练】1.(2021·陕西长安·八年级期中)有一个如图所示的长方体透明玻璃水缸,高,水深,在水面线上紧贴内壁处有一粒食物,且,一只小虫想从水缸外的处沿水缸壁爬到水缸内的处吃掉食物. (1)你认为小虫应该沿怎样的路线爬行才能使爬行的路线最短,请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).【答案】(1)见解析;(2)100cm【分析】(1)做出A关于BC的对称点A’,连接A’G,与BC交于点Q,由两点之间线段最短,此时A’G最短,即AQ+QG最短;(2)A’G为直角△A’EG的斜边,根据勾股定理求解即可.【详解】解:(1)如下图所示,作点A关于BC所在直线的对称点,连接,与交于点,由两点之间线段最短,此时A’G最短,则为最短路线.(2)∵,∴,∴.在中,,,∴.由对称性可知,∴.故小虫爬行的最短路线长为100cm.【点睛】本题考查的是利用勾股定理求最短路径问题,本题的关键是根据对称性作出A的对称点A’,再根据两点之间线段最短,从而可找到路径求出解.2.(2021·山东菏泽·八年级阶段练习)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为的半圆,其边缘.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )m.(取3)A.30 B.28 C.25 D.22【答案】C【分析】根据题意画出侧面展开图,作点C关于AB的对称点F,连接DF,根据半圆的周长求得,根据对称求得,在Rt△CDF中,勾股定理求得.【详解】其侧面展开图如图:作点C关于AB的对称点F,连接DF,∵中间可供滑行的部分的截面是半径为2.5cm的半圆,∴BC=πR=2.5π=7.5cm,AB=CD=20cm,∴CF=2BC=15cm,在Rt△CDF中,DF=cm,故他滑行的最短距离约为cm.故选C.【点睛】本题考查了勾股定理最短路径问题,作出侧面展开图是解题的关键.【知识拓展4】其他最短路径问题【微点拨】根据两点之间线段之和最小进行解决。要点总结:展开—定点—连线—勾股定理例4.(2021·重庆七年级期末)如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为______dm.【答案】17【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】解:三级台阶平面展开图为长方形,长为8dm,宽为,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:,解得.故答案为:17.【点睛】本题考查了平面展开最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.【即学即练】1.(2021·山西八年级期末)如图所示,是长方形地面,长,宽,中间整有一堵砖墙高,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走( )A.20 B.24 C.25 D.26【答案】D【分析】将题中图案展开后,连接AC,利用勾股定理可得AC长,将中间的墙展开在平面上,则原矩形长度增加宽度不变,求出新矩形的对角线长即为所求.【详解】解:展开如图得新矩形,连接AC,则其长度至少增加2MN,宽度不变,由此可得:, 根据勾股定理有:故选D.【点睛】本题考查平面展开图形最短路线问题以及勾股定理得应用;解题关键在于根据题意画出正确的平面展开图.2.(2022·河南·郑州市第八中学八年级期末)在一个长11cm,宽5cm的长方形纸片上,如图放置一根正三棱柱的木块,它的侧棱平行且大于纸片的宽,它的底面边长为1cm的等边三角形,一只蚂蚁从点A处到点C处的最短路程是________cm.【答案】13【分析】将木块展开看作平面后,由两点之间线段最短知蚂蚁的最短距离为线段AC,由勾股定理计算即可.【详解】将长方形纸片与木块展开后如图所示由两点之间线段最短可知蚂蚁的最短距离为线段AC此时AB长度为11-1+2=12 由勾股定理有即故答案为:13.【点睛】本题考查了图形的展开以及勾股定理,将正三棱柱的木块展开看作平面是解题的关键.分层提分题组A 基础过关练1.(2021·江苏八年级月考)将一根的筷子,置于底面直径为,高的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度,则的取值范围是( )A. B. C. D.【答案】D【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是AC= ==17,则在杯外的最小长度是24-17=7cm,所以h的取值范围是7cm≤h≤16cm,故选D.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.2.(2022·泰兴市八年级期中)如图,底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A爬到点B,则蚂蚁爬行的最短距离是(   )A. B.8 C.10 D.12【答案】C【分析】将圆柱的侧面展开,得到一个长方体,再然后利用两点之间线段最短,利用勾股定理从而可得答案.【详解】解:如图所示: 由于圆柱体的底面周长为12cm, 则BC=cm. 又因为AC=8cm, 所以:.故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是10cm. 故选:.【点睛】本题考查的是勾股定理的实际应用,两点之间线段最短,将圆柱的侧面展开,构造出直角三角形利用勾股定理是解题的关键.3.(2022·全国·八年级)如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为(       )A.10cm B.20cm C.cm D.100cm【答案】B【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为12 cm,圆柱高为8cm,∴AB=8dm,BC=BC′=6cm,∴AC2=62+82=100,∴AC=10,∴这圈金属丝的周长最小为2AC=20(cm),故选:B.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.4.(2022·河南八年级月考)如图所示,有一根高为的木柱,它的底面周长为,在准备元旦联欢晚会时,为了营造喜庆的气氛,老师要求小明将一根彩带从底柱向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ).A. B. C. D.【答案】B【分析】将圆柱沿母线剪开并展开,则这根彩带的长应为7个圆柱侧面展开图并排后的长方形的对角线,利用勾股定理求值即可.【详解】解:将圆柱沿母线剪开并展开,则这根彩带的长最少应为7个圆柱侧面展开图并排后的长方形的对角线,如图所示,AC即为所求,其中AB=40×7=280cm,BC=2.1m=210cm根据勾股定理可得AC==350cm故选B.【点睛】此题考查的是勾股定理的应用,掌握勾股定理和两点之间线段最短是解题关键.5.(2021·河南八年级期末)如图,台阶阶梯每一层高,宽,长.一只蚂蚁从点爬到点,最短路程是____________.【答案】【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】解:如图所示,∵楼梯的每一级的高宽长分别为20cm,宽40cm,长50cm,∴(cm) 即蚂蚁从点A沿着台阶面爬行到点B的最短路程是130cm.故答案为:130cm.【点睛】本题考查的是平面展开-最短路线问题,根据题意画出台阶的平面展开图是解答此题的关键.6.(2021·成都市八年级专题练习)如图,一个长方体盒子紧贴地面,一只蚂蚁由出发,在盒子表面上爬到点,已知,,,这只蚂蚁爬行的最短路程是________.【答案】【分析】将长方体盒子按不同方式展开,得到不同的长方形,求出不同长方形的对角线,最短者即为正确答案. 【详解】解:由题意,如图所示,得;如图所示,得,如图3所示,,∴蚂蚁爬行的最短路程是10.故答案为:10.【解答】本题考查了勾股定理的应用,根据题意将长方体盒子展开为平面图形,根据勾股定理求出最短路程进行比较是解题关键.题组B 能力提升练1.(2021·河南八年级期末)如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是( ) A.厘米 B.10厘米 C.厘米 D.8厘米【答案】B【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.2.(2021·山东菏泽·八年级阶段练习)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为的半圆,其边缘.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )m.(取3)A.30 B.28 C.25 D.22【答案】C【分析】根据题意画出侧面展开图,作点C关于AB的对称点F,连接DF,根据半圆的周长求得,根据对称求得,在Rt△CDF中,勾股定理求得.【详解】其侧面展开图如图:作点C关于AB的对称点F,连接DF,∵中间可供滑行的部分的截面是半径为2.5cm的半圆,∴BC=πR=2.5π=7.5cm,AB=CD=20cm,∴CF=2BC=15cm,在Rt△CDF中,DF=cm,故他滑行的最短距离约为cm.故选C.【点睛】本题考查了勾股定理最短路径问题,作出侧面展开图是解题的关键.3.(2022·广东·八年级期中)如图,一个三棱柱盒子底面三边长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A沿盒子的表面爬行一周到盒顶的点B,蚂蚁要爬行的最短路程是_______cm.【答案】15【分析】将三棱柱侧面展开得出矩形,求出矩形对角线的长度即可.【详解】解:如图,右侧为三棱柱的侧面展开图,AA′=3+4+5=12cm,A′B=9cm,∠AA′B=90°,∴AB= =15cm,故答案为:15.【点睛】本题考查了三棱柱的侧面展开图,两点之间线段最短,勾股定理,画出三棱柱的侧面展开图,运用勾股定理是解题关键.4.(2022·山东烟台·七年级期末)如图,在一个长AB为18m,宽AD为7m的长方形草坪ABCD上,放着一根长方体的木块 ,已知木块的较长边与AD平行,横截是边长为2米的正方形,一只蚂蚁从点A爬过木块到达C处需要走的最短路程是     ________ 米.【答案】【分析】解答此题要将木块表面展开,再构建直角三角形,然后根据两点之间线段最短,再利用勾股定理进行解答.【详解】解:如图,由题意可知,将木块展开, 展开图的长相当于是AB+2个正方形的宽, ∴长为18+2×2=22米;宽为7米. 于是最短路径为:(米). 故答案为:.【点睛】本题考查了平面展开-最短路径问题,两点之间线段最短的性质,勾股定理的应用,有一定的难度,要注意培养空间想象能力.5.(2022·贵州·贵阳市第十六中学八年级阶段练习)如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.小明认为蚂蚁能够最快到达目的地的路径AC1,小王认为蚂蚁能够最快到达目的地的路径AC1′.已知AB=4,BC=4,CC1=5时,请你帮忙他们求出蚂蚁爬过的最短路径长.【答案】最短路径长是.【分析】根据题意,先将长方体展开,再根据两点之间线段最短.【详解】解:蚂蚁沿着木柜表面经线段BB1到C1',爬过的路径的长是AC1′;蚂蚁沿着木柜表面经线段A1B1到C1,爬过的路径的长是AC1.因为:AC1′>AC1,所以最短路径长是.【点睛】本题考查了平面展开-最短路径问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.6.(2021·无锡市八年级期中)(1)如图1,长方体的底面边长分别为3m和2m,高为1m,在盒子里,可以放入最长为_______m的木棒;(2)如图2,在与(1)相同的长方体中,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点C,那么所用细线最短需要______m;(3)如图3,长方体的棱长分别为AB=BC=6cm,假设昆虫甲从盒内顶点以2厘米/秒的速度在盒子的内部沿棱向下爬行,同时昆虫乙从盒内顶点A以相同的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕捉昆虫甲?【答案】(1);(2);(3)昆虫乙至少需要秒钟才能捕捉到昆虫甲【分析】(1)利用勾股定理求出斜对角线的长即可;(2)利用勾股定理求解即可;(3)由题意的最短路径相等,设昆虫甲从顶点 沿棱 向顶点C爬行的同时,昆虫乙从顶点A按路径A→E→F,爬行捕捉到昆虫甲需x秒钟,列出方程求解即可.【详解】(1)最长的为斜对角线:=;(2)这根细线的长为:=;(3)设昆虫甲从顶点沿棱向顶点C爬行的同时,昆虫乙从顶点A按路径A→E→F,爬行捕捉到昆虫甲需x秒钟,如图1在Rt△ACF中, ∵x>0,解得:答:昆虫乙至少需要秒钟才能捕捉到昆虫甲.【点睛】本题考查了勾股定理的实际应用,把立体图形转化为平面图形是解题的关键.题组C 培优拔尖练1.(2022·福建泉州·八年级期末)如图,某长方体的底面为正方形,,,现用一根绳子从点A开始,沿着长方体的表面环绕长方体2圈,最后在点处结束,则这根绳子的最小长度为(       )A.(或)m B.(或)m C.(或)m D.(或)m【答案】C【分析】如果从点A开始经过4个侧面缠绕2圈到达点,相当于直角三角形的两条直角边分别是8和4,再根据勾股定理求出斜边长即可.【详解】解:如果从点A开始经过4个侧面缠绕2圈到达点,相当于直角三角形的两条直角边分别是8和4,根据勾股定理可知所用绳子最短需要m.故选C.【点睛】本题考查的是平面展开−最短路线问题,根据题意画出图形,利用数形结合求解是解答此题的关键.2.(2022·山东东营·七年级期末)如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为_____ m.【答案】1【分析】画出容器侧面展开图(见详解),作点A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图,将容器侧面展开,作点A关于EF的对称点A′,连接A′B,则A′B为最短距离.由题意知,A′D=0.6m,A′E=AE=0.2m,∴BD=0.9-0.3+0.2=0.8m,∴A′B===1(m).故答案为:1.【点睛】本题考查了勾股定理的应用最短路径问题,将圆柱的侧面展开,利用轴对称的性质和勾股定理进行计算是解题的关键.3.(2022·河南·郑州枫杨外国语学校八年级期末)如图,一大楼的外墙面ADEF与地面ABCD垂直,点P在墙面上,若PA=AB=5米,点P到AD的距离是4米,有一只蚂蚁要从点P爬到点B,它的最短行程是______米【答案】【分析】可将大楼的墙面ADEF与地面ABCD展开,连接PB,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P作PG⊥BF于G,连接PB,∵AG=4,AP=AB=5,∴,BG=9,∴故这只蚂蚁的最短行程应该是故答案为:【点睛】本题考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决.4.(2021·江苏无锡·八年级期中)爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是 ______cm【答案】16【分析】将正方形沿着翻折得到正方形 ,过点在正方形内部作,使,连接,过作于点,此时最小,运用勾股定理求解即可.【详解】如图,将正方形沿着翻折得到正方形 ,过点在正方形内部作,使,连接,过作于点,则四边形是矩形,四边形是平行四边形,∴,,,,此时最小,∵点是中点,∴cm,∴cm,cm,在中,cm,∴cm,故答案为:16.【点睛】本题考查最短路径问题,考查了正方形的性质,矩形的性质,平行四边形的性质和判定,勾股定理,轴对称性质等,解题的关键是将立体图形中的最短距离转换为平面图形的两点之间线段长度进行计算.5.(2022·广东·深圳市高级中学八年级期末)如图,在长方体透明容器(无盖)内的点B处有一滴糖浆,容器外A点处的蚂蚁想沿容器壁爬到容器内吃糖浆,已知容器长为5cm,宽为3cm,高为4cm,点A距底部1cm,请问蚂蚁需爬行的最短距离是(容器壁厚度不计)(  )A. B. C. D.【答案】D【分析】将点沿着它所在的棱向上翻折至点处,分如图(见解析)所示的三种情况讨论,分别利用化曲为直的思想和勾股定理求解即可得.【详解】解:如图,将点沿着它所在的棱向上翻折至点处,则新长方体的长、宽、高分别为,将这个新长方体展开为以下三种情况,如图所示: ,,,∵,∴蚂蚁需爬行的最短距离是,故选:D.【点睛】本题考查了勾股定理的应用,正确分三种情况讨论是解题关键.6.(2021·江苏无锡·八年级期中)爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是 ______cm【答案】16【分析】将正方形沿着翻折得到正方形 ,过点在正方形内部作,使,连接,过作于点,此时最小,运用勾股定理求解即可.【详解】如图,将正方形沿着翻折得到正方形 ,过点在正方形内部作,使,连接,过作于点,则四边形是矩形,四边形是平行四边形,∴,,,,此时最小,∵点是中点,∴cm,∴cm,cm,在中,cm,∴cm,故答案为:16.【点睛】本题考查最短路径问题,考查了正方形的性质,矩形的性质,平行四边形的性质和判定,勾股定理,轴对称性质等,解题的关键是将立体图形中的最短距离转换为平面图形的两点之间线段长度进行计算.

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map