初中数学3 勾股定理的应用巩固练习
展开1、利用勾股定理及逆定理解决生活中的实际问题(梯子滑动、风吹莲动、折竹抵地、台风和爆破、航行和信号塔、速度等问题)。
2、解决实际问题时,要善于构造直角三角形,把实际问题抽象成几何问题.
知识精讲
知识点01 勾股定理的应用
勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.
【知识拓展1】梯子滑动问题
【微点拨】梯子滑动问题解题步骤:
1)运用勾股定理求出梯子滑动之前在墙上或者地面上的距离;
2)运用勾股定理求出梯子滑动之后在墙上或者地面上的距离;
3)两者相减即可求出梯子在墙上或者地面上滑动的距离。
注意:梯子长度为不变量。
主要题型:常见题型有梯子滑动、绳子移动等题型。
例1.(2021·江苏)如图,一架25米长的梯子斜靠在一竖直的墙上,梯子底端离墙有7米.
(1)求梯子靠墙的顶端距地面有多少米?(2)小燕说“如果梯子的顶端沿墙下滑了4米,那么梯子的底端在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.
【即学即练1】
1.(2022·江苏八年级期中)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.
2.(2021·吉林九台·八年级期末)如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从移动到,同时小船从移动到,且绳长始终保持不变.、、三点在一条直线上,.回答下列问题:(1)根据题意可知: (填“>”、“<”、“=”).
(2)若米,米,米,求小男孩需向右移动的距离(结果保留根号).
【知识拓展2】风吹草动和折竹抵地
【微点拨】风吹莲动问题解题步骤:
1)根据问题设出“水深”或者“莲花”的高度;
2)根据题目条件表示出题目中涉及的直角三角形的另外两条边长;
3)根据勾股定理列方程求解。
折竹抵地问题解题步骤:
1)根据问题设出“竹子”折断之前或者折断之后距离地面的高度;
2)根据题目条件表示出题目中涉及的直角三角形的另外两条边长;
3)根据勾股定理列方程求解。
注意:1)“莲花”高度为不变量。2)“竹子”高度为不变量。
主要题型:常见题型有莲花、芦苇、吸管、筷子、有竹子、风筝线、旗杆绳等题型。
例1.(2022成都市八年级月考)《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC=_____尺.
例2.(2021·江苏泰州市·八年级期末)如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇生长在它的中央,高出水面的部分为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部恰好碰到岸边的,则这根芦苇的长度是______尺.
【即学即练2】
1.(2022·河南八年级期末)我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即尺,秋千踏板离地的距离就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.
2.(2021·西安市黄河中学八年级月考)如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿竖直插到水底,此时竹竿离岸边点C处的距离米.竹竿高出水面的部分长0.2米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度为( )
A.1.5米B.1.7米C.1.8米D.0.6米
【知识拓展3】台风和爆破问题
【微点拨】台风、爆破问题解题步骤:
1)根据勾股定理计算爆破点或台风中心到目的地的最短距离;
2)将计算出的最短距离跟爆破或台风的影响范围的半径作比较;
3)若最短距离大于影响半径则不受影响,若最短距离小于半径则受影响。
注意:通常会用到垂线段最短的原理。
主要题型:常见题型有爆破、台风等题型。
例1.(2021·辽宁八年级期末)今年的气候变化很大,极端天气频繁出现.某沿海城市气象台监测到台风中心位于正东方向的海上.如图所示,城市所在地为A,台风中心O正以每小时的速度向北偏西60°的方向移动,经监测得知台风中心的范围内将会受台风影响,.该城市是否受到这次台风的影响?若不受影响,请说明理由;若受到这次台风影响,请求出遭受这次台风影响的时间.
【即学即练1】
1.(2021·贵州六盘水·八年级期中)台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力.如图所示,有一台风中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线上的两点A,B的距离分别为:,以台风中心为圆心周围以内为受影响区域.(1)请计算说明海港C会受到台风的影响;(2)若台风的速度为,则台风影响该海港持续的时间有多长?
2.(2021·四川·成都七中八年级期中)如图,在甲村到乙村的公路一旁有一块山地正在开发.现A处需要爆破,已知点A与公路上的停靠站B,C的距离分别为400 m和300 m,且ACAB.为了安全起见,如果爆破点A周围半径260 m的区域内不能有车辆和行人,问在进行爆破时,公路BC段是否需要暂时封闭?为什么?
【知识拓展4】位置问题(航行和信号塔)
【微点拨】航行问题解题步骤:
1)根据航行的方位角或勾股定理逆定理判定直角三角形;
2)根据航行速度和时间表示出直角三角形两直角边长;
3)根据勾股定理列方程求解航行角度、速度或距离。
信号塔、中转站题型解题步骤:
1)根据问题设出未知量(一般情况下求谁设谁),并根据设出的未知量表示出两个直角三角形的直角边长;
2)在两个直角三角形中分别用勾股定理表示出斜边长;
3)根据斜边长相等建立方程求解。
注意:1)轮船航行的题目要注意两船终点之间的距离通常为直角三角形的斜边长;
2)信号塔和中转站等题型要注意两个目的地到信号塔或中转站的距离是相等的。
主要题型:常见题型有轮船航行、信号塔、中转站等题型。
例1.(2021·山东八年级期末)如图,笔直的公路上A、B两点相距22km,C、D为公交公司两停车场,CA⊥AB于点A,DB⊥AB于点B,已知CA=6km,DB=16km,现在要在公路的AB段上建一个加油站M,使得C、D公交公司两停车场到加油站M的距离CM=DM,则加油站M应建在离B点多远处?
例2.(2022·全国·八年级)如图,某港口O位于南北延伸的海岸线上,东面是大海.远洋号、长峰号两艘轮船同时离开港O,各自沿固定方向航行,“远洋”号每小时航行12海里,“长峰”号每小时航行16海里,它们离开港口1小时后,分别到达A,B两个位置,且AB=20海里,已知“远洋”号沿着北偏东60°方向航行,请判断“长峰”号航行的方向,并说明理由.
【即学即练2】
1.(2022·河南·八年级阶段练习)我国在防控新冠疫情上取得重大成绩,但新冠疫情在国外开始蔓延,为了防止境外输入病例的增加,我国暂时停止了一切国际航班、水运.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我国海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,乙巡航艇的航向为北偏西.(1)求甲巡逻艇的航行方向(用含n的式子表示);(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?
2.(2022·江西赣州·八年级期中)为了丰富少年儿童的业余生活,某社区要在如图中所在的直线上建一图书馆,本社区有两所学校,分别在点和点处,于点,于点.已知,,.问:图书室应建在距点多少米处,才能使它到两所学校的距离相等?
【知识拓展5】速度问题(超速和噪音问题)
【微点拨】速度问题解题步骤:
1)根据勾股定理计算行驶的距离;
2)根据行驶距离和时间求出实际行驶速度;
3)比较实际行驶速度和规定速度。
注意:要将速度统一单位后再进行比较。
只要题型:常见题型有汽车超速、噪音影响等题型。
例5.(2021·广州市育才中学八年级期中)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点160米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心,100米为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为36千米/时,则对学校A的噪声影响最大时卡车P与学校A的距离是___米;重型运输卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间是____秒.
【即学即练1】
1.(2021·山东省平邑县第一中学八年级月考)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方50米处的C点,过了6秒后,测得小汽车所在的B点与车速检测仪A之间的距离为130米.(1)求BC间的距离;(2)这辆小汽车超速了吗?请说明理由.
2.(2021·河南周口市·八年级期中)小王与小林进行遥控赛车游戏,终点为点,小王的赛车从点出发,以米/秒的速度由西向东行驶,同时小林的赛车从点出发,以米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于米时,遥控信号会产生相互干扰,米,米,(1)出发秒钟时,遥控信号是否会产生相互干扰?(2)当两赛车距点的距离之和为米时,遥控信号是否会产生相互干扰?
分层提分
题组A 基础过关练
1.(2022·广东东莞·八年级期中)为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB=2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC=0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )
A.1.0 米B.1.2 米C.1.25 米D.1.5 米
2.(2022·湖北省崇阳县八年级期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile,“海天”号每小时航行12nmile,它们离开港口一个半小时后相距30nmile,且知道“远航”号沿东北方向航行,那么“海天”号航行的方向是_______.
3.(2022·全国·八年级课时练习)《九章算术》中记载着这样一个问题:已知甲、乙两人同时从同一地点出发,甲的速度为7步/分,乙的速度为3步/分,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人出发后x分钟相遇.根据勾股定理可列得方程为______.
4.(2022·云南广南·八年级期末)如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB是4米.求竹子折断处与根部的距离CB.
5.(2022·江苏八年级期末)如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN 120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_______s
6.(2021·广东佛山·八年级阶段练习)“交通管理条例第三十五条”规定:小汽车在城市街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪距离130米.
(1)求小汽车6秒走的路程;(2)求小汽车每小时所走的路程,并判定小汽车是否超速?
7.(2021·河南·鹤壁市外国语中学八年级期中)为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P以200米/分的速度在公路MN上沿PN方向行驶时,问村庄是否能听到?若能,请求出总共能听到多长时间的宣传?
题组B 能力提升练
1.(2022·陕西八年级期中)如图所示有一“工”字形的机器零件它是轴对称图形,图中所有的角都是直角,图中数据单位:,那么、两点之间的距离为( )
A.B.C.D.
2.(2020·广西壮族自治区中考真题)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙的距离为寸,点和点距离门槛都为尺(尺寸),则的长是( )
A.寸B.寸C.寸D.寸
3.(2021·山西八年级期末)如图,原来从A村到B村,需要沿路A→C→B()绕过两地间的一片湖,在A, B间建好桥后,就可直接从A村到B村.已知,,那么,建好桥后从 A村到B村比原来减少的路程为( )
A.2kmB.4kmC.10 kmD.14 km
4.(2021·湖北八年级期末)如图,在一条东西走向河流的一侧有一村庄河边原有两个取水点其中由于某种原因,由到的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点在同一条直线上),并新修一条路测得千米,千米,千米.
(1)问是否为从村庄到河边的最近路.请通过计算加以说明;(2)求新路比原路少多少千米.
5.(2022·全国九年级专题练习)拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?
(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?
6.(2021·四川省巴中中学八年级期中)八(1)班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝的高度,他们进行了如下操作:①测得的长度为米;②根据手中剩余线的长度计算出风筝线的长为米;③牵线放风筝的小明身高为米.(1)求风筝的高度;(2)若小亮让风筝沿方向下降了米到点(即米),则他往回收线多少米?
7.(2022·新疆·乌鲁木齐市八年级期中)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度,他们进行了如下操作:①测得的长为15米(注:);②根据手中剩余线的长度计算出风筝线的长为25米;③牵线放风筝的小明身高1.7米.
(1)求风筝的高度.(2)过点D作,垂足为H,求的长度.
8.(2021·成都八年级期中)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?
题组C 培优拔尖练
1.(2022·吉林长春·八年级期末)伊通河,是长春平原上的千年古流,是松花江的二级支流,它发源于吉林省伊通县境内哈达岭山脉青顶山北麓,如图,在伊通河笔直的河流一侧有一旅游地,河边有两个景点 、其中,由于某种原因,由到的路现在已经不通,为方便游客决定在河边新建一个景点H(、、三点在同一直线上),并新修一条路,测得千米,千米,千米.
(1)判断的形状,并说明理由;(2)求原路线的长.
2.(2022·全国·八年级专题练习)如图所示,MN以左为我国领海,以右为公海,上午9时50分我国缉私艇A发现在其正东方向有一走私艇C并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在MN线上巡逻的缉私艇B密切注意,并告知A和C两艇的距离是13海里,缉私艇B测得C与其距离为12海里,若走私艇C的速度不变,最早在什么时间进入我国海域?
3.(2022·全国·八年级专题练习)由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?
(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?
4.(2022·福建·龙岩二中八年级期中)一梯子长2.5m,如图那样斜靠在一面墙上,梯子底端离墙0.7m.
(1)这架梯子的顶端离地面有多高?(2)设梯子顶端到水平地面的距离为,底端到垂直墙面的距离为,若,根据经验可知:当时,梯子最稳定,使用时最安全.若梯子的顶端下滑了,请问这时使用是否安全.
5.(2021·广东·佛山市第四中学九年级阶段练习)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.
(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).
(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险﹖请说明理由.(参考数据:,,精确到1海里)
6.(2021·江苏省锡山高级中学实验学校九年级期中)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向以20海里/小时的速度前去拦截.问:经过多少小时,海监执法船恰好在C处成功拦截.
数学八年级上册3 勾股定理的应用练习题: 这是一份数学八年级上册3 勾股定理的应用练习题,共6页。
初中数学北师大版八年级上册3 勾股定理的应用当堂检测题: 这是一份初中数学北师大版八年级上册3 勾股定理的应用当堂检测题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学北师大版八年级上册3 勾股定理的应用优秀达标测试: 这是一份初中数学北师大版八年级上册3 勾股定理的应用优秀达标测试,文件包含同步讲义北师大版数学八年级上册专题13勾股定理的应用学生版docx、同步讲义北师大版数学八年级上册专题13勾股定理的应用教师版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。