- 专题2.10 等腰三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版) 试卷 0 次下载
- 专题2.13 等腰三角形的轴对称性(分层练习)(培优练)-2023-2024学年八年级数学上册专题讲与练(苏科版) 试卷 0 次下载
- 专题2.15 等边三角形的轴对称性(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册专题讲与练(苏科版) 试卷 0 次下载
- 专题2.17 等边三角形的轴对称性(分层练习)(提升练)-2023-2024学年八年级数学上册专题讲与练(苏科版) 试卷 0 次下载
- 专题2.18 等边三角形的轴对称性(分层练习)(培优练)-2023-2024学年八年级数学上册专题讲与练(苏科版) 试卷 0 次下载
专题2.14 等腰三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)
展开【要点一】等腰三角形的定义
有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
【要点二】等腰三角形的性质
1.等腰三角形的性质
性质1:等腰三角形的两个底角相等(简称“等边对等角”).
性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).
2.等腰三角形是轴对称图形
等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.
【要点三】等腰三角形的判定
如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).
一、单选题
1.(2023·四川眉山·统考中考真题)如图,中,,则的度数为( )
A.B.C.D.
2.(2023·内蒙古·统考中考真题)如图,直线,直线与直线分别相交于点,点在直线上,且.若,则的度数为( )
A.B.C.D.
3.(2023·江苏宿迁·统考中考真题)若等腰三角形有一个内角为,则这个等腰三角形的底角是( )
A.B.C.D.
4.(2023·贵州·统考中考真题)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为,腰长为,则底边上的高是( )
A.B.C.D.
5.(2023·四川自贡·统考中考真题)第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角,算出这个正多边形的边数是( )
A.9B.10C.11D.12
6.(2023·四川凉山·统考中考真题)如图,在等腰中,,分别以点点为圆心,大于为半径画弧,两弧分别交于点和点,连接,直线与交于点,连接,则的度数是( )
A.B.C.D.
7.(2023·河北·统考中考真题)在和中,.已知,则( )
A.B.C.或D.或
8.(2023·河北·统考中考真题)四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为( )
A.2B.3C.4D.5
9.(2023·贵州·统考中考真题)如图,在四边形中,,,.按下列步骤作图:①以点D为圆心,适当长度为半径画弧,分别交于E,F两点;②分别以点E,F为圆心以大于的长为半径画弧,两弧交于点P;③连接并延长交于点G.则的长是( )
A.2B.3C.4D.5
10.(2023·甘肃武威·统考中考真题)如图,是等边的边上的高,以点为圆心,长为半径作弧交的延长线于点,则( )
A.B.C.D.
二、填空题
11.(2023·江西·统考中考真题)将含角的直角三角板和直尺按如图所示的方式放置,已,点,表示的刻度分别为,则线段的长为 cm.
12.(2023·新疆·统考中考真题)如图,在中,若,,,则 .
13.(2023·吉林·统考中考真题)如图,在中,.点,分别在边,上,连接,将沿折叠,点的对应点为点.若点刚好落在边上,,则的长为 .
14.(2023·浙江·统考中考真题)如图,在中,的垂直平分线交于点,交于点,.若,则的长是 .
15.(2023·四川·统考中考真题)如图,,直线l与直线a,b分别交于B,A两点,分别以点A,B为圆心,大于的长为半径画弧,两弧相交于点E,F,作直线,分别交直线a,b于点C,D,连接AC,若,则的度数为 .
16.(2023·湖南·统考中考真题)如图,已知,点D在上,以点B为圆心,长为半径画弧,交于点E,连接,则的度数是 度.
17.(2023·内蒙古通辽·统考中考真题)如图,等边三角形的边长为,动点P从点A出发以的速度沿向点B匀速运动,过点P作,交边于点Q,以为边作等边三角形,使点A,D在异侧,当点D落在边上时,点P需移动 s.
18.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在平面直角坐标系中,点A在轴上,点B在轴上,,连接,过点O作于点,过点作轴于点;过点作于点,过点作轴于点;过点作于点,过点作轴于点;…;按照如此规律操作下去,则点的坐标为 .
三、解答题
19.(2022·四川自贡·统考中考真题)如图,△是等边三角形, 在直线上,.求证: .
20.(2023·江苏苏州·统考中考真题)如图,在中,为的角平分线.以点圆心,长为半径画弧,与分别交于点,连接.
(1)求证:;
(2)若,求的度数.
21.(2023·湖北荆州·统考中考真题)如图,是等边的中线,以为圆心,的长为半径画弧,交的延长线于,连接.求证:.
22.(2023·内蒙古赤峰·统考中考真题)已知:如图,点M在的边上.
求作:射线,使.且点N在的平分线上.
作法:①以点O为圆心,适当长为半径画弧,分别交射线,于点C,D.
②分别以点C,D为圆心.大于长为半径画弧,两弧在的内部相交于点P.
③画射线.
④以点M为圆心,长为半径画弧,交射线于点N.
⑤画射线.
射线即为所求.
(1)用尺规作图,依作法补全图形(保留作图痕迹);
(2)根据以上作图过程,完成下面的证明.
证明:∵平分.
∴ ① ,
∵,
∴ ② ,( ③ ).(括号内填写推理依据)
∴.
∴.( ④ ).(填写推理依据)
23.(2023·湖北武汉·统考中考真题)如图,在四边形中,,点在的延长线上,连接.
(1)求证:;
(2)若平分,直接写出的形状.
24.(2022·青海·统考中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.
(1)问题发现:
如图1,若和是顶角相等的等腰三角形,BC,DE分别是底边.求证:;
图1
(2)解决问题:如图2,若和均为等腰直角三角形,,点A,D,E在同一条直线上,CM为中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.
图2
参考答案
1.C
【分析】根据等腰三角形的等边对等角和三角形的内角和定理,即可解答.
【详解】解:,
,
,
故选:C.
【点拨】本题考查了等腰三角形的等边对等角性质,三角形内角和定理,熟知上述概念是解题的关键.
2.C
【分析】由,,可得,由,可得,进而可得的度数.
【详解】解:∵,,
∴,
∵,
∴,
故选:C.
【点拨】本题考查了等边对等角,三角形的内角和定理,平行线的性质.解题的关键在于明确角度之间的数量关系.
3.C
【分析】先判断出的内角是这个等腰三角形的顶角,再根据等腰三角形的定义求解即可得.
【详解】解:等腰三角形有一个内角为,
∴这个等腰三角形的底角是,
故选:C.
【点拨】本题考查了等腰三角形的定义,三角形内角和定理,解题的关键是熟练掌握等腰三角形的两个底角相等.
4.B
【分析】作于点D,根据等腰三角形的性质和三角形内角和定理可得,再根据含30度角的直角三角形的性质即可得出答案.
【详解】解:如图,作于点D,
中,,,
,
,
,
故选B.
【点拨】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题的关键是掌握30度角所对的直角边等于斜边的一半.
5.D
【分析】根据三角形内角和定理以及正多边形的性质,得出,然后可得每一个外角为,进而即可求解.
【详解】解:依题意,,,
∴
∴
∴这个正多边形的一个外角为,
所以这个多边形的边数为,
故选:D.
【点拨】本题考查了三角形内角和定理,正多边形的性质,正多边形的外角与边数的关系,熟练掌握正多边的外角和等于360°是解题的关键.
6.B
【分析】先根据等边对等角求出,由作图方法可知,是线段的垂直平分线,则,可得,由此即可得到.
【详解】解:∵在等腰中,,,
∴,
由作图方法可知,是线段的垂直平分线,
∴,
∴,
∴,
故选B.
【点拨】本题主要考查了等腰三角形的性质与判定,线段垂直平分线的尺规作图,三角形内角和定理等等,灵活运用所学知识是解题的关键.
7.C
【分析】过A作于点D,过作于点,求得,分两种情况讨论,利用全等三角形的判定和性质即可求解.
【详解】解:过A作于点D,过作于点,
∵,
∴,
当在点D的两侧,在点的两侧时,如图,
∵,,
∴,
∴;
当在点D的两侧,在点的同侧时,如图,
∵,,
∴,
∴,即;
综上,的值为或.
故选:C.
【点拨】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.
8.B
【分析】利用三角形三边关系求得,再利用等腰三角形的定义即可求解.
【详解】解:在中,,
∴,即,
当时,为等腰三角形,但不合题意,舍去;
若时,为等腰三角形,
故选:B.
【点拨】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.
9.A
【分析】先根据作图过程判断平分,根据平行线的性质和角平分线的定义可得,进而可得,由此可解.
【详解】解:由作图过程可知平分,
,
,
,
,
,
,
故选A.
【点拨】本题考查角平分线的作图,平行线的性质,等腰三角形的判定,解题的关键是根据作图过程判断出平分.
10.C
【分析】由等边三角形的性质求解,再利用等腰三角形的性质可得,从而可得答案.
【详解】解:∵是等边的边上的高,
∴,
∵,
∴,
故选C
【点拨】本题考查的是等边三角形的性质,等腰三角形的性质,熟记等边三角形与等腰三角形的性质是解本题的关键.
11.
【分析】根据平行线的性质得出,进而可得是等边三角形,根据等边三角形的性质即可求解.
【详解】解:∵直尺的两边平行,
∴,
又,
∴是等边三角形,
∵点,表示的刻度分别为,
∴,
∴
∴线段的长为,
故答案为:.
【点拨】本题考查了平行线的性质,等边三角形的性质与判定,得出是解题的关键.
12.
【分析】根据等边对等角得出,再有三角形内角和定理及等量代换求解即可.
【详解】解:∵,,
∴,
∴,
∵,
∴,即,
解得:,
故答案为:.
【点拨】题目主要考查等边对等角及三角形内角和定理,结合图形,找出各角之间的关系是解题关键.
13.
【分析】根据折叠的性质以及含30度角的直角三角形的性质得出,即可求解.
【详解】解:∵将沿折叠,点的对应点为点.点刚好落在边上,在中,,,
∴,
∴,
故答案为:.
【点拨】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.
14.4
【分析】由可得,由是的垂直平分线可得,从而可得.
【详解】解:∵,
∴,
∵是的垂直平分线,
∴,
∴.
故答案为:4.
【点拨】本题主要考查了线段垂直平分线的性质以及等角对等边等知识,熟练掌握相关知识是解答本题的关键.
15./56度
【分析】先判断为线段的垂直平分线,即可得,,再由,可得,即有,利用三角形内角和定理可求的度数.
【详解】解:由作图可知为线段的垂直平分线,
∴,
∴,,
∵,
∴,
∴,
∵,
∴,
故答案为:.
【点拨】本题考查了垂直平分线的作图、垂直平分线的性质、平行线的性质以及三角形内角和定理等知识,判断为线段的垂直平分线是解答本题的关键.
16.65
【分析】根据题意可得,再根据等腰三角形两个底角相等和三角形内角和为180°进行计算即可解答.
【详解】解:根据题意可得:,
∴,
∵,
∴.
故答案为:65.
【点拨】本题主要考查了等腰三角形的性质、三角形内角和等要点,掌握等腰三角形的性质是解答本题的关键.
17.1
【分析】当点D落在上时,如图,,根据等边三角形,是等边三角形,证明,进而可得x的值.
【详解】解:设点P的运动时间为,由题意得,
,
∵,
∴,
∵和是等边三角形,
∴,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
解得.
故答案为:1.
【点拨】本题主要考查等边三角形的性质,含角的直角三角形的性质,全等三角形的判定和性质,灵活运用等边三角形的性质是解题的关键.
18.
【分析】根据题意,结合图形依次求出的坐标,再根据其规律写出的坐标即可.
【详解】解:在平面直角坐标系中,点A在轴上,点B在轴上,,
是等腰直角三角形,,
,
是等腰直角三角形,
同理可得:均为等腰直角三角形,
,
根据图中所有的三角形均为等腰直角三角形,
依次可得:
由此可推出:点的坐标为.
故答案为:.
【点拨】本题主要考查了平面直角坐标系中点的坐标特征,以及点的坐标变化规律问题,等腰直角三角形的性质,解题的关键是依次求出的坐标,找出其坐标的规律.
19.详见解析
【分析】由等边三角形的性质以及题设条件,可证△ADB≌△AEC,由全等三角形的性质可得.
【详解】证明:∵△是等边三角形,
∴AB=AC,∠ABC=∠ACB,
∴∠ABD=∠ACE,
在△ADB和△AEC中,
∴△ADB≌△AEC(SAS),
∴.
【点拨】本题考查等边三角形的性质、补角的性质、全等三角形的判定和性质,综合性强,但是整体难度不大.
20.(1)见解析
(2)
【分析】(1)根据角平分线的定义得出,由作图可得,即可证明;
(2)根据角平分线的定义得出,由作图得出,则根据三角形内角和定理以及等腰三角形的性质得出,,进而即可求解.
【详解】(1)证明:∵为的角平分线,
∴,
由作图可得,
在和中,
,
∴;
(2)∵,为的角平分线,
∴
由作图可得,
∴,
∵,为的角平分线,
∴,
∴
【点拨】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,角平分线的定义,熟练掌握等腰三角形的性质与判定是解题的关键.
21.见解析
【分析】利用三线合一和等腰三角形的性质,证出,再利用等边对等角即可.
【详解】证明:为等边的中线,
,
,
,
【点拨】本题考查了等边三角形,等腰三角形的性质和判定,理解记忆相关定理是解题的关键.
22.(1)见解析
(2)①,②,③等边对等角;④内错角相等,两直线平行
【分析】(1)根据题意用尺规作图,依作法补全图形即可;
(2)由平分推导,由推导,从而推出,继而利用“内错角相等,两直线平行”判定.
【详解】(1)根据意义作图如下:射线即为所求作的射线.
(2)证明:∵平分.
∴,
∵,
∴,(等边对等角).(括号内填写推理依据)
∴.
∴.(内错角相等,两直线平行).(填写推理依据)
故答案为:①,②,③等边对等角;④内错角相等,两直线平行.
【点拨】本题考查作尺规作图—作角平分线和相等线段,等边对等角,平行线的判定等知识,根据题意正确画出图形是解题的关键.
23.(1)见解析
(2)等边三角形
【分析】(1)由平行线的性质得到,已知则,可判定即可得到;
(2)由,得到,由平分,得到,进一步可得,即可证明是等边三角形.
【详解】(1)证明:,
∴,
,
.
(2)∵,,
∴,
∵平分,
∴,
∴,
∴,
∴,
∴是等边三角形
【点拨】此题考查了平行线的判定和性质、等边三角形的判定、三角形内角和定理、角平分线的定义等知识,熟练掌握平行线的判定和性质是解题的关键.
24.(1)见解析
(2);
【分析】(1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;
(2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论.
【详解】(1)证明:∵和是顶角相等的等腰三角形,
∴,,,
∴,
∴.
在和中,
,
∴,
∴.
(2)解:,,
理由如下:由(1)的方法得,,
∴,,
∵是等腰直角三角形,
∴,
∴,
∴,
∴.
∵,,
∴.
∵,
∴,
∴.
∴.
【点拨】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD≌△BCE是解本题的关键.
专题2.24 轴对称的最值问题(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.24 轴对称的最值问题(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共30页。
专题2.9 角的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.9 角的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共23页。
专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版): 这是一份专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共19页。