高中物理人教版 (2019)选择性必修 第三册3 原子的核式结构模型教案设计
展开本节内容由电子的发现、原子的核式结构模型、原子核的电荷与尺度三部分组成,重点是电子的发现对人类认识原子结构的重要意义,以及卢瑟福在α粒子散射实验基础上提出的原子核式结构模型。本节内容开启了对原子结构发现历史与其科学研究方法的探索。教材通过介绍人类认识原子结构的过程,启发学生认识科学探究的意义。
二、教学目标
(1)知道发现电子的意义,体会电子发现过程中蕴含的科学方法。
(2)了解α粒子散射实验原理和实验现象。
(3)了解卢瑟福的原子核式结构模型,知道原子和原子核大小的数量级。
(4)认识原子核式结构模型建立的科学推理与论证过程。
三、教学重点
①引导学生自主思考,由ɑ粒子散射实验的结果否定“枣糕模型”,得出原子的核式结构模型。
②在教学中渗透物理学研究方法:模型方法,微观粒子碰撞方法。
四、教学资源
多媒体教学设备、PPT多媒体课件、FLASH工具。
五、教学过程
1.回顾历史,引入新课
通过播放1964年我国第一颗原子弹爆炸成功的视频,介绍人类现在已经开始利用原子的核能。早在1897年,汤姆生就发现了电子,使人类第一次敲开原子世界的大门,今天我们就循着前人的足迹研究原子内部结构的发现过程。
2.电子的发现
教师介绍汤姆孙,给出汤姆孙对射线本质的认识。
问:如果你也认为阴极射线是一种带点粒子流,要如何验证呢?请大家设计一下实验。
答:学生会利用电磁场的相关知识设计实验。引出汤姆孙的气体放电管,并且加以介绍。
教师介绍汤姆孙实验结果:
①1897 年,J. J. 汤姆孙根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带负电的粒子流,并求出了这种粒子的比荷。比荷是氢离子(也就是质子)比荷的近两千倍。J. J. 汤姆孙认为,这可能表示阴极射线粒子电荷量的大小与一个氢离子一样,而质量比氢离子小得多。后来,他直接测到了阴极射线粒子的电荷量, 尽管测量不很准确,但足以证明这种粒子电荷量的大小与氢离子大致相同,这就表明他当初的猜测是正确的。
②汤姆孙进一步发现,用不同材料的阴极做实验, 所得比荷的数值都是相同的。这说明不同物质都能发射这种带电粒子,它是构成各种物质的共有成分。组成阴极射线的粒子被称为电子。
电子发现的过程体现了科学实验的重要性。补充电子电荷量的测量。(密立根油滴实验)
教师介绍密立根油滴实验:
电子电荷的精确测定是在1909〜1913年间由密立根通过著名的“油滴实验”做出的。目前公认的电子电荷e的值为e=1.602176634×10-19C。密立根实验更重要的发现是:电荷是量子化的,即任何带电体的电荷只能是e的整数倍。从实验测到的比荷e的数值,可以确定电子的质量。现在人们普遍认为电子的质量为m=9.109383 56×10 -31 kg。带电粒子的电荷量与其质量之比,即比荷,是一个重要的物理量。
发现电子以后,J. J. 汤姆孙又进一步研究了许多新现象,如光电效应、热离子发射效应和β射线等。他发现,不论阴极射线、光电流、热离子流还是β射线,它们都包含电子。J. J. 汤姆孙对证实电子的存在有很大贡献,因此公认他是电子的发现者。他因气体导电的研究获得1906 年的诺贝尔物理学奖
经历的电子发现的过程,让学生谈一下电子发现的意义。
教师总结:电子的发现,使人们认识到原子不是组成物质的最小微粒,原子本身也是有结构的。同时电子带负点,原子带正电,为“原子的核式结构模型”买下伏笔。
原子带正电,电子带负电,那么原子内部的正电和负电是如何分布的,汤姆孙提出了原子的枣糕模型,图片展示枣糕模型,汤姆生的枣糕模型虽然能够解释一些物理现象,但无法解释卢瑟福α粒子散射实验。
3.ɑ粒子散射实验原理、装置、实验现象
ɑ粒子散射实验的装置,主要由放射源、金箔、荧光屏、望远镜和转动圆盘几部分组成。ɑ粒子散射实验在课堂上无法直接演示,利用动画向学生模拟实验的装置、过程和现象,使学生获得直观的切身体验,留下深刻的印象。通过多媒体重点指出,荧光屏和望远镜能够围绕金箔在一个圆周上运动,从而可以观察到穿透金箔后偏转角度不同的ɑ粒子。动画展示实验,通过显微镜观察到的现象,并且要让学生了解,这种观察是非常艰苦细致的工作,所用的时间也是相当长的。
学生分组讨论交流得到实验结果:绝大多数沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。
教师提问:根据汤姆生原子模型分析,α粒子轰击金箔后应出现什么情况?
①α粒子出现大角度散射有没有可能是与电子碰撞后造成的?
②按照汤姆生原子模型,α粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转?
学生分组讨论交流得到结果:
①碰撞前后,质量大的α粒子遇到电子,就像飞行的子弹遇到空气中的尘埃,因此不可能出现大角散射。
②对于α粒子在原子附近时由于原子呈中性,与ɑ粒子之间没有或很小的库仑力的作用,正电荷在原子内部均匀的分布,α粒子穿过原子时,由于原子两侧正电荷将对它的斥力有相当大一部分互相抵消,使α粒子偏转的力不会很大,所以α粒子不可能发生大角度偏转。
教师再次提问:这个实验结果和我们预想的结果有什么不同?汤姆生原子结构模型准确吗?
学生分组讨论交流得到结果:汤姆生原子结构模型无法解释ɑ粒子散射实验现象。
教师再次提问:你认为原子中的正电荷和质量应如何分布,才有可能造成ɑ粒子的大角度偏转?
学生小组讨论、小组间互相提问。
教师总结:
①绝大多数粒子基本不偏转表明:原子内部绝大部分是“空”的。
②少数粒子发生较大偏转表明:原子内部有“正电荷集中”的区域。
③极少数粒子被弹回表明:作用力很大,质量很大的核。
师生互动,学生小组讨论,学生分析推理得到卢瑟福的原子结构模型,得到卢瑟福的原子的核式结构模型后再展示立体动画α粒子散射模型,使学生有更清晰的直观形象、生动的认识。
4.原子核式结构模型
①在原子中心有一个很小的核,叫原子核.
②原子的全部正电荷和几乎全部质量都集中在原子核里.
③带负电的电子在核外空间绕着核旋转.。
原子的大小的教学应该让学生有个数量级的概念,即原子的半径在10-10m左右,原子核的大小在10-15~10-14左右.原子核的半径只相当于原子半径的万分之一,体积只相当于原子体积的亿分之一。为了加深学生的印象,可举一些较形象的比喻或按比例画些示意图,同时通过表格展示,对比。
5.课堂小结
课堂练习:
1、在用α粒子轰击金箔的实验中,卢瑟福观察到的α粒子的运动情况是( )
A、全部α粒子穿过金属箔后仍按原来的方向前进
B、绝大多数α粒子穿过金属箔后仍按原来的方向前进,少数发生较大偏转,极少数甚至被弹回
C、少数α粒子穿过金属箔后仍按原来的方向前进,绝大多数发生较大偏转,甚至被弹回
D、全部α粒子都发生很大偏转
答案:B
2、在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中符合实验事实的是( )
答案:C
【作业】
一种测定电子比荷的实验装置如图所示。真空玻璃管内,阴极K发出的电子经阳极A与阴极K之间的高电压加速后,形成细细的一束电子流,沿图示方向进入两极板C、D 间的区域。若两极板C、D 间无电压,电子将打在荧光屏上的O 点;若在两极板间施加电压U,则离开极板区域的电子将打在荧光屏上的P点;若再在极板间施加一个方向垂直于纸面向外、磁感应强度为B 的匀强磁场,则电子在荧光屏上产生的光点又回到O。已知极板的长度l=5.00 cm,C、D间的距离d=1.50 cm,极板区的中点M 到荧光屏中点O的距离为L=12.50 cm,U =200 V,B = 6 . 3×10– 4 T, P点到 O 点的距离 y=3.0 cm。试求电子的比荷。
半径大小(数量级)
类比
原子
10-10m左右
硬币
原子核
10-15~10-14左右
足球场
高中物理人教版 (2019)选择性必修 第三册2 气体的等温变化教案: 这是一份高中物理人教版 (2019)选择性必修 第三册2 气体的等温变化教案,共5页。
物理选择性必修 第三册3 原子的核式结构模型教学设计: 这是一份物理选择性必修 第三册3 原子的核式结构模型教学设计,共12页。
选择性必修 第三册4 核裂变与核聚变教学设计及反思: 这是一份选择性必修 第三册4 核裂变与核聚变教学设计及反思,共7页。教案主要包含了教材分析,教学目标,教学重难点,教学课时安排,上课时间,教学方法,教学过程,教学反思等内容,欢迎下载使用。