![1.2 一定是直角三角形吗 同步练习 北师大版数学八年级上册(无答案)第1页](http://m.enxinlong.com/img-preview/2/3/15040098/0-1701235276777/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![1.2 一定是直角三角形吗 同步练习 北师大版数学八年级上册(无答案)第2页](http://m.enxinlong.com/img-preview/2/3/15040098/0-1701235276816/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![1.2 一定是直角三角形吗 同步练习 北师大版数学八年级上册(无答案)第3页](http://m.enxinlong.com/img-preview/2/3/15040098/0-1701235276864/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北师大版八年级上册2 一定是直角三角形吗一课一练
展开
这是一份初中数学北师大版八年级上册2 一定是直角三角形吗一课一练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1. 在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶米、米,则秒后两车相距( )米.
2. 下列说法中正确的是( )
3. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多米,当他把绳子的下端拉开米后,发现下端刚好接触地面,则旗杆的高度是( )
4. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中,,,,则( )
5. 两个边长分别为的直角三角形和一个两条直角边都是的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为( )
6. 七巧板是我国祖先的一项卓越创造,下面四幅图中有三幅图是小明用如图所示的七巧板拼成的,不是用如图所示的七巧板拼成的是( )
7. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为,较短直角边长为,若,小正方形的面积为,则大正方形的边长为( )
8. 以下列数组为边长,能构成直角三角形的是( )
9. 如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S7的值为( )
10. 如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c三个正方形的面积之和为( )
二、填空题
11. 如图,正方体的棱长为5,一只蚂蚁如果要沿着正方体的表面从点A爬到点B,需要爬行的最短距离是____.
12. 有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是_________
13. 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.下图是3世纪我国汉代的数学家赵爽在注解《周髀算经》时给出的图案,人们称它为“赵爽弦图”.此图中四个全等的直角三角形可以围成一个大正方形,中空的部分是一个小正方形.如果大正方形的面积是25,小正方形的面积是1,则的值是____________.
14. 如图,圆柱形玻璃杯的高为,底面圆的周长为,在杯内离底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上与蜂蜜相对的点处,则蚂蚁到达蜂蜜所爬行的最短路程为________.
三、解答题
15. 在解答“判断由长为,2,的三条线段组成的三角形是不是直角三角形”一题中,小明是这样做的,你认为小明的解答正确吗?请说明理由.
解:设a=,b=2,c=.
∵a2+b2=()2+22=,c2=()2=,
∴a2+b2≠c2,
∴这三条线段组成的三角形不是直角三角形.
16. 如图,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成了一个梯形.用不同的方法计算梯形的面积,可以得到一个等式:a2+b2=c2.
(1)请用两种方法计算梯形的面积,并写出得到等式a2+b2=c2的过程.
(2)如果满足等式a2+b2=c2的a、b、c是三个正整数,我们称a,b,c为勾股数.已知m、n是正整数且m>n,证明2mn、m2﹣n2、m2+n2是勾股数.
17. 清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》,对“三边长为3,4,5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现代的数学语言表述是:“若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S,则求其边长的方法为:第一步:=;第二步:=k;第三步:分别用3,4,5乘以,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
18. 【背景介绍】勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.
【小试牛刀】把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,∠DAB=∠B=90°,AC⊥DE.请用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:
S梯形ABCD= ,
S△EBC= ,
S四边形AECD= ,
则它们满足的关系式为 ,经化简,可得到勾股定理.
【知识运用】(1)如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC=16千米,则两个村庄的距离为 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=25千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.
【知识迁移】借助上面的思考过程与几何模型,求代数式最小值(0<x<16)
A.
B.
C.
D.
A.已知a,b,c是三角形的三边,则a2+b2=c2
B.在直角三角形中两边和的平方等于第三边的平方
C.在Rt△ABC中,∠C=90°,所以a2+b2=c2
D.在Rt△ABC中,∠B=90°,所以a2+b2=c2
A.米
B.米
C.米
D.米
A.25
B.36
C.32
D.40
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.2 ,3,4
B.1,,
C.1,,
D.0.2,0.5,0.6
A.
B.
C.
D.
A.11
B.15
C.10
D.22
相关试卷
这是一份初中数学北师大版八年级上册2 一定是直角三角形吗课后复习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版八年级上册2 一定是直角三角形吗练习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版八年级上册第一章 勾股定理2 一定是直角三角形吗课时训练,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)