终身会员
搜索
    上传资料 赚现金

    2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案

    立即下载
    加入资料篮
    2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案第1页
    2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案第2页
    2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案

    展开

    这是一份2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案,共16页。试卷主要包含了单选题,填空题,双空题,解答题,证明题等内容,欢迎下载使用。
    一、单选题
    1.已知集合,,则( )
    A.B.
    C.D.
    【答案】B
    【分析】结合题意利用并集的定义计算即可.
    【详解】由题意可得:.
    故选:B.
    2.在复平面内,复数满足,则( )
    A.B.C.D.
    【答案】D
    【分析】由题意利用复数的运算法则整理计算即可求得最终结果.
    【详解】由题意可得:.
    故选:D.
    3.已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的( )
    A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件
    【答案】A
    【分析】利用两者之间的推出关系可判断两者之间的条件关系.
    【详解】若函数在上单调递增,则在上的最大值为,
    若在上的最大值为,
    比如,
    但在为减函数,在为增函数,
    故在上的最大值为推不出在上单调递增,
    故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,
    故选:A.
    4.某四面体的三视图如图所示,该四面体的表面积为( )
    A.B.C.D.
    【答案】A
    【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.
    【详解】根据三视图可得如图所示的几何体-正三棱锥,
    其侧面为等腰直角三角形,底面等边三角形,
    由三视图可得该正三棱锥的侧棱长为1,
    故其表面积为,
    故选:A.
    5.若双曲线离心率为,过点,则该双曲线的方程为( )
    A.B.C.D.
    【答案】B
    【分析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.
    【详解】,则,,则双曲线的方程为,
    将点的坐标代入双曲线的方程可得,解得,故,
    因此,双曲线的方程为.
    故选:B
    6.已知函数,则不等式的解集是( ).
    A.B.
    C.D.
    【答案】D
    【分析】作出函数和的图象,观察图象可得结果.
    【详解】因为,所以等价于,
    在同一直角坐标系中作出和的图象如图:
    两函数图象的交点坐标为,
    不等式的解为或.
    所以不等式的解集为:.
    故选:D.
    【点睛】本题考查了图象法解不等式,属于基础题.
    7.《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长(单位:cm)成等差数列,对应的宽为(单位: cm),且长与宽之比都相等,已知,,,则
    A.64B.96C.128D.160
    【答案】C
    【分析】设等差数列公差为,求得,得到,结合党旗长与宽之比都相等和,列出方程,即可求解.
    【详解】由题意,五种规格党旗的长(单位:cm)成等差数列,设公差为,
    因为,,可得,
    可得,
    又由长与宽之比都相等,且,可得,所以.
    故选:C.
    8.函数是
    A.奇函数,且最大值为2B.偶函数,且最大值为2
    C.奇函数,且最大值为D.偶函数,且最大值为
    【答案】D
    【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.
    【详解】由题意,,所以该函数为偶函数,
    又,
    所以当时,取最大值.
    故选:D.
    9.某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:).24h降雨量的等级划分如下:

    在综合实践活动中,某小组自制了一个底面直径为200 mm,高为300 mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150 mm(如图所示),则这24h降雨量的等级是
    A.小雨B.中雨C.大雨D.暴雨
    【答案】B
    【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.
    【详解】由题意,一个半径为的圆面内的降雨充满一个底面半径为,高为的圆锥,
    所以积水厚度,属于中雨.
    故选:B.
    10.在△ABC中,csC=,AC=4,BC=3,则tanB=( )
    A.B.2C.4D.8
    【答案】C
    【分析】先根据余弦定理求,再根据余弦定理求,最后根据同角三角函数关系求
    【详解】设
    故选:C
    【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.
    11.已知直线(为常数)与圆交于点,当变化时,若的最小值为2,则
    A.B.C.D.
    【答案】C
    【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出
    【详解】由题可得圆心为,半径为2,
    则圆心到直线的距离,
    则弦长为,
    则当时,取得最小值为,解得.
    故选:C.
    12.已知函数f(x)=sinx+,则()
    A.f(x)的最小值为2B.f(x)的图象关于y轴对称
    C.f(x)的图象关于直线对称D.f(x)的图象关于直线对称
    【答案】D
    【分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.
    【详解】可以为负,所以A错;
    关于原点对称;
    故B错;
    关于直线对称,故C错,D对
    故选:D
    【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.
    二、填空题
    13.在的展开式中,常数项为 .
    【答案】
    【分析】利用二项式定理求出通项公式并整理化简,然后令的指数为零,求解并计算得到答案.
    【详解】的展开式的通项
    令,解得,
    故常数项为.
    故答案为:.
    三、双空题
    14.已知抛物线的焦点为,点在抛物线上,垂直轴与于点.若,则点的横坐标为 ; 的面积为 .
    【答案】 5
    【分析】根据焦半径公式可求的横坐标,求出纵坐标后可求.
    【详解】因为抛物线的方程为,故且.
    因为,,解得,故,
    所以,
    故答案为:5;.
    15.已知向量在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则
    ; .
    【答案】 0 3
    【分析】根据坐标求出,再根据数量积的坐标运算直接计算即可.
    【详解】以交点为坐标原点,建立直角坐标系如图所示:
    则,
    ,,
    .
    故答案为:0;3.
    四、填空题
    16.若点关于轴对称点为,写出的一个取值为 .
    【答案】(满足即可)
    【分析】根据在单位圆上,可得关于轴对称,得出求解.
    【详解】与关于轴对称,
    即关于轴对称,

    则,
    当时,可取的一个值为.
    故答案为:(满足即可).
    五、解答题
    17.在中,,.
    (1)求;
    (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求边上中线的长.
    条件①:;
    条件②:的周长为;
    条件③:的面积为;
    【答案】(1);(2)答案不唯一,具体见解析.
    【分析】(1)由正弦定理化边为角即可求解;
    (2)若选择①:由正弦定理求解可得不存在;
    若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求;
    若选择③:由面积公式可求各边长,再由余弦定理可求.
    【详解】(1),则由正弦定理可得,
    ,,,,
    ,解得;
    (2)若选择①:由正弦定理结合(1)可得,
    与矛盾,故这样的不存在;
    若选择②:由(1)可得,
    设的外接圆半径为,
    则由正弦定理可得,

    则周长,
    解得,则,
    由余弦定理可得边上的中线的长度为:

    若选择③:由(1)可得,即,
    则,解得,
    则由余弦定理可得边上的中线的长度为:
    .
    18.设等比数列{an}满足,.
    (1)求{an}的通项公式;
    (2)记为数列{lg3an}的前n项和.若,求m.
    【答案】(1);(2).
    【分析】(1)设等比数列的公比为,根据题意,列出方程组,求得首项和公比,进而求得通项公式;
    (2)由(1)求出的通项公式,利用等差数列求和公式求得,根据已知列出关于的等量关系式,求得结果.
    【详解】(1)设等比数列的公比为,
    根据题意,有,解得,
    所以;
    (2)令,
    所以,
    根据,可得,
    整理得,因为,所以,
    【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.
    六、证明题
    19.如图:在正方体中,为中点,与平面交于点.
    (1)求证:为的中点;
    (2)点是棱上一点,且二面角的余弦值为,求的值.
    【答案】(1)证明见解析;(2).
    【分析】(1)首先将平面进行扩展,然后结合所得的平面与直线的交点即可证得题中的结论;
    (2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数的值.
    【详解】(1)如图所示,取的中点,连结,
    由于为正方体,为中点,故,
    从而四点共面,即平面CDE即平面,
    据此可得:直线交平面于点,
    当直线与平面相交时只有唯一的交点,故点与点重合,
    即点为中点.
    (2)以点为坐标原点,方向分别为轴,轴,轴正方向,建立空间直角坐标系,
    不妨设正方体的棱长为2,设,
    则:,
    从而:,
    设平面的法向量为:,则:

    令可得:,
    设平面的法向量为:,则:

    令可得:,
    从而:,
    则:,
    整理可得:,故(舍去).
    【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.
    20.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:
    假设所有学生对活动方案是否支持相互独立.
    (Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;
    (Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;
    (Ⅲ)将该校学生支持方案二的概率估计值记为,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为,试比较与 的大小.(结论不要求证明)
    【答案】(Ⅰ)该校男生支持方案一的概率为,该校女生支持方案一的概率为;
    (Ⅱ),(Ⅲ)
    【分析】(Ⅰ)根据频率估计概率,即得结果;
    (Ⅱ)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果;
    (Ⅲ)先求,再根据频率估计概率,即得大小.
    【详解】(Ⅰ)该校男生支持方案一的概率为,
    该校女生支持方案一的概率为;
    (Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,
    所以3人中恰有2人支持方案一概率为:;
    (Ⅲ)
    【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.
    七、解答题
    21.已知函数.
    (1)若,求曲线在点处的切线方程;
    (2)若在处取得极值,求的单调区间,以及其最大值与最小值.
    【答案】(1);(2)函数的增区间为、,单调递减区间为,最大值为,最小值为.
    【分析】(1)求出、的值,利用点斜式可得出所求切线的方程;
    (2)由可求得实数的值,然后利用导数分析函数的单调性与极值,由此可得出结果.
    【详解】(1)当时,,则,,,
    此时,曲线在点处的切线方程为,即;
    (2)因为,则,
    由题意可得,解得,
    故,,列表如下:
    所以,函数的增区间为、,单调递减区间为.
    当时,;当时,.
    所以,,.
    22.已知椭圆一个顶点,以椭圆的四个顶点为顶点的四边形面积为.
    (1)求椭圆E的方程;
    (2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.
    【答案】(1);(2).
    【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,从而可求椭圆的标准方程.
    (2)设,求出直线的方程后可得的横坐标,从而可得,联立直线的方程和椭圆的方程,结合韦达定理化简,从而可求的范围,注意判别式的要求.
    【详解】(1)因为椭圆过,故,
    因为四个顶点围成的四边形的面积为,故,即,
    故椭圆的标准方程为:.
    (2)
    设,
    因为直线的斜率存在,故,
    故直线,令,则,同理.
    直线,由可得,
    故,解得或.
    又,故,所以

    故即,
    综上,或.
    等级
    24h降雨量(精确到0.1)
    ……
    ……
    小雨
    0.1~9.9
    中雨
    10.0~24.9
    大雨
    25.0~49.9
    暴雨
    50.0~99.9
    ……
    ……
    男生
    女生
    支持
    不支持
    支持
    不支持
    方案一
    200人
    400人
    300人
    100人
    方案二
    350人
    250人
    150人
    250人

    极大值

    极小值

    相关试卷

    2023-2024学年新疆阿克苏地区柯坪县柯坪湖州国庆中学高二上学期9月月考数学试题含答案:

    这是一份2023-2024学年新疆阿克苏地区柯坪县柯坪湖州国庆中学高二上学期9月月考数学试题含答案,共15页。试卷主要包含了单选题,填空题,解答题,证明题等内容,欢迎下载使用。

    新疆阿克苏地区柯坪县柯坪湖州国庆中学2023-2024学年高一上学期9月月考数学试题:

    这是一份新疆阿克苏地区柯坪县柯坪湖州国庆中学2023-2024学年高一上学期9月月考数学试题,共2页。

    新疆阿克苏地区柯坪县柯坪湖州国庆中学2022-2023学年高一下学期期末考试数学试题(含答案):

    这是一份新疆阿克苏地区柯坪县柯坪湖州国庆中学2022-2023学年高一下学期期末考试数学试题(含答案),文件包含高一数学试卷docx、高一数学试卷pdf、高一数学参考答案docx等3份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map