![2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案第1页](http://m.enxinlong.com/img-preview/3/3/14998248/0-1700047799800/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案第2页](http://m.enxinlong.com/img-preview/3/3/14998248/0-1700047799834/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案第3页](http://m.enxinlong.com/img-preview/3/3/14998248/0-1700047799850/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:全套2024届高三上学期月考数学试题含答案
2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案
展开
这是一份2024届新疆阿克苏地区柯坪县柯坪湖州国庆中学高三上学期9月月考数学试题含答案,共16页。试卷主要包含了单选题,填空题,双空题,解答题,证明题等内容,欢迎下载使用。
一、单选题
1.已知集合,,则( )
A.B.
C.D.
【答案】B
【分析】结合题意利用并集的定义计算即可.
【详解】由题意可得:.
故选:B.
2.在复平面内,复数满足,则( )
A.B.C.D.
【答案】D
【分析】由题意利用复数的运算法则整理计算即可求得最终结果.
【详解】由题意可得:.
故选:D.
3.已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的( )
A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件
【答案】A
【分析】利用两者之间的推出关系可判断两者之间的条件关系.
【详解】若函数在上单调递增,则在上的最大值为,
若在上的最大值为,
比如,
但在为减函数,在为增函数,
故在上的最大值为推不出在上单调递增,
故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,
故选:A.
4.某四面体的三视图如图所示,该四面体的表面积为( )
A.B.C.D.
【答案】A
【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.
【详解】根据三视图可得如图所示的几何体-正三棱锥,
其侧面为等腰直角三角形,底面等边三角形,
由三视图可得该正三棱锥的侧棱长为1,
故其表面积为,
故选:A.
5.若双曲线离心率为,过点,则该双曲线的方程为( )
A.B.C.D.
【答案】B
【分析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.
【详解】,则,,则双曲线的方程为,
将点的坐标代入双曲线的方程可得,解得,故,
因此,双曲线的方程为.
故选:B
6.已知函数,则不等式的解集是( ).
A.B.
C.D.
【答案】D
【分析】作出函数和的图象,观察图象可得结果.
【详解】因为,所以等价于,
在同一直角坐标系中作出和的图象如图:
两函数图象的交点坐标为,
不等式的解为或.
所以不等式的解集为:.
故选:D.
【点睛】本题考查了图象法解不等式,属于基础题.
7.《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长(单位:cm)成等差数列,对应的宽为(单位: cm),且长与宽之比都相等,已知,,,则
A.64B.96C.128D.160
【答案】C
【分析】设等差数列公差为,求得,得到,结合党旗长与宽之比都相等和,列出方程,即可求解.
【详解】由题意,五种规格党旗的长(单位:cm)成等差数列,设公差为,
因为,,可得,
可得,
又由长与宽之比都相等,且,可得,所以.
故选:C.
8.函数是
A.奇函数,且最大值为2B.偶函数,且最大值为2
C.奇函数,且最大值为D.偶函数,且最大值为
【答案】D
【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.
【详解】由题意,,所以该函数为偶函数,
又,
所以当时,取最大值.
故选:D.
9.某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:).24h降雨量的等级划分如下:
在综合实践活动中,某小组自制了一个底面直径为200 mm,高为300 mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150 mm(如图所示),则这24h降雨量的等级是
A.小雨B.中雨C.大雨D.暴雨
【答案】B
【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.
【详解】由题意,一个半径为的圆面内的降雨充满一个底面半径为,高为的圆锥,
所以积水厚度,属于中雨.
故选:B.
10.在△ABC中,csC=,AC=4,BC=3,则tanB=( )
A.B.2C.4D.8
【答案】C
【分析】先根据余弦定理求,再根据余弦定理求,最后根据同角三角函数关系求
【详解】设
故选:C
【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.
11.已知直线(为常数)与圆交于点,当变化时,若的最小值为2,则
A.B.C.D.
【答案】C
【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出
【详解】由题可得圆心为,半径为2,
则圆心到直线的距离,
则弦长为,
则当时,取得最小值为,解得.
故选:C.
12.已知函数f(x)=sinx+,则()
A.f(x)的最小值为2B.f(x)的图象关于y轴对称
C.f(x)的图象关于直线对称D.f(x)的图象关于直线对称
【答案】D
【分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.
【详解】可以为负,所以A错;
关于原点对称;
故B错;
关于直线对称,故C错,D对
故选:D
【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.
二、填空题
13.在的展开式中,常数项为 .
【答案】
【分析】利用二项式定理求出通项公式并整理化简,然后令的指数为零,求解并计算得到答案.
【详解】的展开式的通项
令,解得,
故常数项为.
故答案为:.
三、双空题
14.已知抛物线的焦点为,点在抛物线上,垂直轴与于点.若,则点的横坐标为 ; 的面积为 .
【答案】 5
【分析】根据焦半径公式可求的横坐标,求出纵坐标后可求.
【详解】因为抛物线的方程为,故且.
因为,,解得,故,
所以,
故答案为:5;.
15.已知向量在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则
; .
【答案】 0 3
【分析】根据坐标求出,再根据数量积的坐标运算直接计算即可.
【详解】以交点为坐标原点,建立直角坐标系如图所示:
则,
,,
.
故答案为:0;3.
四、填空题
16.若点关于轴对称点为,写出的一个取值为 .
【答案】(满足即可)
【分析】根据在单位圆上,可得关于轴对称,得出求解.
【详解】与关于轴对称,
即关于轴对称,
,
则,
当时,可取的一个值为.
故答案为:(满足即可).
五、解答题
17.在中,,.
(1)求;
(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求边上中线的长.
条件①:;
条件②:的周长为;
条件③:的面积为;
【答案】(1);(2)答案不唯一,具体见解析.
【分析】(1)由正弦定理化边为角即可求解;
(2)若选择①:由正弦定理求解可得不存在;
若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求;
若选择③:由面积公式可求各边长,再由余弦定理可求.
【详解】(1),则由正弦定理可得,
,,,,
,解得;
(2)若选择①:由正弦定理结合(1)可得,
与矛盾,故这样的不存在;
若选择②:由(1)可得,
设的外接圆半径为,
则由正弦定理可得,
,
则周长,
解得,则,
由余弦定理可得边上的中线的长度为:
;
若选择③:由(1)可得,即,
则,解得,
则由余弦定理可得边上的中线的长度为:
.
18.设等比数列{an}满足,.
(1)求{an}的通项公式;
(2)记为数列{lg3an}的前n项和.若,求m.
【答案】(1);(2).
【分析】(1)设等比数列的公比为,根据题意,列出方程组,求得首项和公比,进而求得通项公式;
(2)由(1)求出的通项公式,利用等差数列求和公式求得,根据已知列出关于的等量关系式,求得结果.
【详解】(1)设等比数列的公比为,
根据题意,有,解得,
所以;
(2)令,
所以,
根据,可得,
整理得,因为,所以,
【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.
六、证明题
19.如图:在正方体中,为中点,与平面交于点.
(1)求证:为的中点;
(2)点是棱上一点,且二面角的余弦值为,求的值.
【答案】(1)证明见解析;(2).
【分析】(1)首先将平面进行扩展,然后结合所得的平面与直线的交点即可证得题中的结论;
(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数的值.
【详解】(1)如图所示,取的中点,连结,
由于为正方体,为中点,故,
从而四点共面,即平面CDE即平面,
据此可得:直线交平面于点,
当直线与平面相交时只有唯一的交点,故点与点重合,
即点为中点.
(2)以点为坐标原点,方向分别为轴,轴,轴正方向,建立空间直角坐标系,
不妨设正方体的棱长为2,设,
则:,
从而:,
设平面的法向量为:,则:
,
令可得:,
设平面的法向量为:,则:
,
令可得:,
从而:,
则:,
整理可得:,故(舍去).
【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.
20.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:
假设所有学生对活动方案是否支持相互独立.
(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;
(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;
(Ⅲ)将该校学生支持方案二的概率估计值记为,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为,试比较与 的大小.(结论不要求证明)
【答案】(Ⅰ)该校男生支持方案一的概率为,该校女生支持方案一的概率为;
(Ⅱ),(Ⅲ)
【分析】(Ⅰ)根据频率估计概率,即得结果;
(Ⅱ)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果;
(Ⅲ)先求,再根据频率估计概率,即得大小.
【详解】(Ⅰ)该校男生支持方案一的概率为,
该校女生支持方案一的概率为;
(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,
所以3人中恰有2人支持方案一概率为:;
(Ⅲ)
【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.
七、解答题
21.已知函数.
(1)若,求曲线在点处的切线方程;
(2)若在处取得极值,求的单调区间,以及其最大值与最小值.
【答案】(1);(2)函数的增区间为、,单调递减区间为,最大值为,最小值为.
【分析】(1)求出、的值,利用点斜式可得出所求切线的方程;
(2)由可求得实数的值,然后利用导数分析函数的单调性与极值,由此可得出结果.
【详解】(1)当时,,则,,,
此时,曲线在点处的切线方程为,即;
(2)因为,则,
由题意可得,解得,
故,,列表如下:
所以,函数的增区间为、,单调递减区间为.
当时,;当时,.
所以,,.
22.已知椭圆一个顶点,以椭圆的四个顶点为顶点的四边形面积为.
(1)求椭圆E的方程;
(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.
【答案】(1);(2).
【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,从而可求椭圆的标准方程.
(2)设,求出直线的方程后可得的横坐标,从而可得,联立直线的方程和椭圆的方程,结合韦达定理化简,从而可求的范围,注意判别式的要求.
【详解】(1)因为椭圆过,故,
因为四个顶点围成的四边形的面积为,故,即,
故椭圆的标准方程为:.
(2)
设,
因为直线的斜率存在,故,
故直线,令,则,同理.
直线,由可得,
故,解得或.
又,故,所以
又
故即,
综上,或.
等级
24h降雨量(精确到0.1)
……
……
小雨
0.1~9.9
中雨
10.0~24.9
大雨
25.0~49.9
暴雨
50.0~99.9
……
……
男生
女生
支持
不支持
支持
不支持
方案一
200人
400人
300人
100人
方案二
350人
250人
150人
250人
增
极大值
减
极小值
增
相关试卷
这是一份2023-2024学年新疆阿克苏地区柯坪县柯坪湖州国庆中学高二上学期9月月考数学试题含答案,共15页。试卷主要包含了单选题,填空题,解答题,证明题等内容,欢迎下载使用。
这是一份新疆阿克苏地区柯坪县柯坪湖州国庆中学2023-2024学年高一上学期9月月考数学试题,共2页。
这是一份新疆阿克苏地区柯坪县柯坪湖州国庆中学2022-2023学年高一下学期期末考试数学试题(含答案),文件包含高一数学试卷docx、高一数学试卷pdf、高一数学参考答案docx等3份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。