终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年数学高考大一轮复习第九章9.11 圆锥曲线中求值与证明问题

    立即下载
    加入资料篮
    2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题第1页
    2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题

    展开

    这是一份2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题,共4页。
    §9.11 圆锥曲线中求值与证明问题题型一 求值问题1 (2022·新高考全国)已知点A(2,1)在双曲线C1(a>1)上,直线lCPQ两点,直线APAQ的斜率之和为0.(1)l的斜率;(2)tanPAQ2,求PAQ的面积.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 求值问题即是根据条件列出对应的方程,通过解方程求解.跟踪训练1 在平面直角坐标系xOy中,已知椭圆C1(a>b>0)过点,焦距与长轴之比为AB分别是椭圆C的上、下顶点,M是椭圆C上异于AB的一点.(1)求椭圆C的方程;(2)若点P在直线xy20上,且3,求PMA的面积;(3)过点M作斜率为1的直线分别交椭圆C于另一点N,交y轴于点D,且点D在线段OA(不包括端点OA),直线NA与直线BM交于点P,求·的值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二 证明问题2 (2023·邵阳模拟)已知抛物线C的焦点Fx轴上,过F且垂直于x轴的直线交CA(A在第一象限)B两点,且|AB|4.(1)C的标准方程;(2)已知lC的准线,过F的直线l1CMN(MN异于AB)两点,证明:直线AMBNl相交于一点.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 圆锥曲线证明问题的类型及求解策略(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等)(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.跟踪训练2 (2022·宁德模拟)ABC(0,1)D四点中恰有三点在椭圆T1(a>b>0)上.(1)求椭圆T的方程;(2)动直线yxt(t0)与椭圆交于EF两点,EF的中点为M,连接OM(其中O为坐标原点)交椭圆于PQ两点,证明:|ME|·|MF||MP|·|MQ|.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    相关试卷

    2024年高考数学第一轮复习讲义第九章9.11 圆锥曲线中求值与证明问题(学生版+解析):

    这是一份2024年高考数学第一轮复习讲义第九章9.11 圆锥曲线中求值与证明问题(学生版+解析),共16页。试卷主要包含了11 圆锥曲线中求值与证明问题等内容,欢迎下载使用。

    2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题:

    这是一份2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题,共3页。试卷主要包含了椭圆C,如图,已知抛物线Γ,已知双曲线C等内容,欢迎下载使用。

    高考数学第一轮复习第九章 §9.11 圆锥曲线中定点与定值问题:

    这是一份高考数学第一轮复习第九章 §9.11 圆锥曲线中定点与定值问题,共10页。试卷主要包含了已知P在抛物线C,已知椭圆C等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map