|试卷下载
终身会员
搜索
    上传资料 赚现金
    新高考数学一轮复习讲练测专题8.4直线、平面平行的判定及性质(讲)(含解析)
    立即下载
    加入资料篮
    新高考数学一轮复习讲练测专题8.4直线、平面平行的判定及性质(讲)(含解析)01
    新高考数学一轮复习讲练测专题8.4直线、平面平行的判定及性质(讲)(含解析)02
    新高考数学一轮复习讲练测专题8.4直线、平面平行的判定及性质(讲)(含解析)03
    还剩14页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习讲练测专题8.4直线、平面平行的判定及性质(讲)(含解析)

    展开
    这是一份新高考数学一轮复习讲练测专题8.4直线、平面平行的判定及性质(讲)(含解析),共17页。

    专题8.4   直线、平面平行的判定及性质

    新课程考试要求

    1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;

    2. 掌握公理、判定定理和性质定理.

    核心素养

    本节涉及的数学核心素养:数学运算、逻辑推理、直观想象.

    考向预测

    (1)以几何体为载体,考查线线、线面、面面平行证明.

    (2)利用平行关系及平行的性质进行适当的转化,处理综合问题.

    (3)空间中的平行关系在高考命题中,主要与平面问题中的平行、简单几何体的结构特征等问题相结合,综合直线和平面,以及简单几何体的内容于一体,经常是以简单几何体作为载体,以解答题形式呈现是主要命题方式, 通过对图形或几何体的认识,考查线面平行、面面平行的判定与性质,考查转化思想、空间想象能力、逻辑思维能力及运算能力.

    【知识清单】

    知识点1.直线与平面平行的判定与性质

     

    判定

    性质

    定义

    定理

    图形

    条件

    aα

    aαbαab

    aα

    aαaβαβb

    结论

    aα

    bα

    aα

    ab

    知识点2.面面平行的判定与性质

     

    判定

    性质

    定义

    定理

    图形

    条件

    αβ

    aβbβabP

    aαbα

    αβαγa

    βγb

    αβaβ

    结论

    αβ

    αβ

    ab

    aα

    知识点3.线面、面面平行的综合应用

    1.平面与平面的位置关系有相交、平行两种情况.

    2.直线和平面平行的判定

    (1)定义:直线和平面没有公共点,则称直线平行于平面;

    (2)判定定理:aαbα,且abaα

    (3)其他判定方法:αβaαaβ.

    3.直线和平面平行的性质定理:aαaβαβlal.

    4.两个平面平行的判定

    (1)定义:两个平面没有公共点,称这两个平面平行;

    (2)判定定理:aαbαabMaβbβαβ

    (3)推论:abMabαa′∩b′=M′,a′,bβaa′,bbαβ.

    5.两个平面平行的性质定理

    (1)αβaαaβ

    (2)αβγαaγβbab.

    6.与垂直相关的平行的判定

    (1)aαbαab

    (2)aαaβαβ.

    考点分类剖析

    考点一 直线与平面平行的判定与性质

    【典例12021·江苏省镇江中学高一月考)直线与平面无公共点直线在平面________条件(.充分不必要必要不充分充要既不充分也不必要中选一个合适的填空)

    【答案】充分不必要

    【解析】

    根据线面间得位置关系及充分性和必要性得定义即可得解.

    【详解】

    解:因为直线与平面无公共点,则直线在平面外,所以充分性成立,

    又因直线在平面外,则直线与平面相交或平行,即直线与平面有一个公共点或无公共点,所以必要性不成立,

    所以直线与平面无公共点直线在平面的充分不必要条件.

    故答案为:充分不必要.

    【典例22020·临猗县临晋中学月考(文))如图,已知四棱锥,底面四边形为菱形,分别是线段的中点.

    1)求证:平面

    2)求异面直线所成角的大小.

    【答案】(1)见解析;(2

    【解析】

    1)解:连接于点分别是线段的中点,

    平面平面

    平面

    2)解:由(1)知,就是异面直线

    所成的角或其补角.

    四边形为菱形,

    中,

    异面直线所成的角为

    【规律方法】

    判断或证明线面平行的常用方法:

    利用线面平行的定义,一般用反证法;

    利用线面平行的判定定理(aαbαabaα),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)

    利用面面平行的性质定理(αβaαaβ);

    利用面面平行的性质(αβaβaαaβ). 

    【变式探究】

    12021·河北安平中学高一月考)已知正方体的棱长为2,点分别是棱的中点,点在四边形(包括边界)运动,则下列说法正确的是(   

    A.截面的面积是

    B.点和点到平面的距离不相等

    C.若平面,则点的轨迹的长度是

    D.若平面,则点的轨迹的长度是

    【答案】ACD

    【解析】

    中点为,截面为等腰梯形,求其面积即可;平面过线段的中点,即可作出判断;过点分别做与平面,平面平行的平面,从而明确点的轨迹,得到长度.

    【详解】

    中点为,易得,即截面为等腰梯形

    截面的面积是,故A正确;

    连接,与交于点,则点为的中点,

    而平面过线段的中点,

    和点到平面的距离相等,故B错误;

    的中点为,取的中点为,连接

    易得平面平面,即点的轨迹为,且,故C正确;

    同样易知平面平面,即点的轨迹为,且,故D正确;

    故选:ACD

    2(2019·江西高考模拟(文))已知空间几何体中,均为边长为的等边三角形,为腰长为的等腰三角形,平面平面,平面平面.

     

    (1)试在平面内作一条直线,使直线上任意一点的连线均与平面平行,并给出详细证明

    (2)求点到平面的距离

    【答案】(1)见解析;(2)

    【解析】

    如图所示:取BC和BD的中点H、G,连接HG,HG为所求直线,

    证明如下:因为BC和BD的中点H、G,所以,

    又平面平面,且平面BCD

    又平面平面. ,得

    所以 ,即

    所以,所以直线HG上任意一点的连线均与平面平行.

    由(1)可得,即平面ABC

    所以点E到平面ABC的距离和点O到平面ABC的距离相等,记为

    三角形ABC的面积

    而三角形ACE的面积

    用等体积法可得:

    特别提醒

    解决有关线面平行的基本问题的注意事项:(1)易忽视判定定理与性质定理的条件,如易忽视线面平行的判定定理中直线在平面外这一条件;(2)结合题意构造或绘制图形,结合图形作出判断;(3)可举反例否定结论或用反证法判断结论是否正确.

    考点  平面与平面平行的判定与性质

    【典例3】2021·长春市第二十九中学高一期中)如图所示,在三棱柱中,EFGH分别是ABAC的中点.

     

    1)求证:平面ABC

    2)求证:平面平面BCHG.

    【答案】(1)证明见解析;(2)证明见解析.

    【解析】

    1)首先根据三角形中位线性质得到,再利用线面平行的判定证明即可.

    2)首先根据题意易证,从而得到平面平面,再利用面面平行的判定证明平面平面即可.

    【详解】

    1)在三棱柱中,

    因为分别是的中点, 

    所以

    又因为,所以.

    因为平面平面

    所以

    2)因为分别是的中点,所以.

    又因为在三棱柱中,的中点,

    所以,即四边形为平行四边形.

    所以.

    因为平面平面,所以平面

    因为平面平面,所以平面

    又因为平面,且

    所以平面平面.

    【典例42021·江苏省镇江中学高一月考)如图,在三棱柱中,底面是正三角形,平面,已知,侧棱长为的中点,分别是的中点.

    1)求所成角的大小;

    2)求证:平面平面

    【答案】(1; (2)证明见解析.

    【解析】

    1)连接,证得,把异面直线所成角转化为直线所成的角,在直角中,即可求解;

    2)由(1)知,证得平面,再由的中点,得到,证得平面,结合面面平行的判定定理,即可证得平面平面.

    【详解】

    1)连接,因为分别是的中点,所以

    所以异面直线所成角即为直线所成的角,

    在直角中,由,可得,

    所以.

    2)由(1)知平面平面ABB1A1,所以平面

    因为的中点,所以

    因为平面,且平面,所以平面

    又因为,且平面

    所以平面平面.

    【规律方法】

    判定面面平行的常用方法:

    (1)面面平行的定义,即判断两个平面没有公共点;

    (2)面面平行的判定定理;

    (3)垂直于同一条直线的两平面平行;

    (4)平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行.

    【变式探究】

    1. 2020·安徽省太和第一中学高二开学考试)已知直线lm,平面,下列命题正确的是(   

    A

    B

    C

    D

    【答案】D

    【解析】

    由题意得,对于A中,可能相交,所以A是错误的;

    对于B中,,如果可能相交,故是错误的;

    对于C中,可能相交,所以C错误的;对于D中,满足面面平行的判定定理,所以,故D正确的,

    故选:D.

    2. 2020·赣州市赣县第三中学月考(文))如图,在三棱柱中,EFG分别为AB的中点.

    求证:平面平面BEF

    若平面,求证:HBC的中点.

    【答案】1)见解析(2)见解析

    【解析】

    如图,

    F分别为的中点,

    平面平面平面

    FG分别为AB的中点,

    四边形为平行四边形,则

    平面平面平面

    平面平面BEF

    平面平面,平面平面

    平面与平面ABC有公共点G,则有经过G的直线,设交

    ,得

    AB的中点,BC的中点.

    【总结提升】

    证明两个平面平行的方法有:

    用定义,此类题目常用反证法来完成证明;

    用判定定理或推论(即线线平行面面平行),通过线面平行来完成证明;

    根据垂直于同一条直线的两个平面平行这一性质进行证明;

    借助传递性来完成.

    面面平行问题常转化为线面平行,而线面平行又可转化为线线平行,需要注意转化思想的应用.

    考点  线面、面面平行的综合应用

    【典例52020·全国高三其他(文))如图,在正方体中,分别是的中点,则下列说法:

    平面;②;③;④平面

    其中正确的命题序号是________.

    【答案】①②③④

    【解析】

    分析:①构造平行四边形可证明线线平行,通过线线平行可证线面平行;

    ②利用线面垂直,证明线线垂直;

    ③构造平行四边形可证明线线平行;

    ④构造平面,通过线线平行可证线面平行.

    详解:

    在正方体中,分别是的中点,

    ①如图,设中点为,连接

    则有

    ∴四边形为平行四边形,

    同理四边形为平行四边形,

    平面平面

    平面

    故命题①正确;

    ②如图,连接

    则有平面

    平面

    故命题②正确;

    ③如图,连接

    则有

    ∴四边形是平行四边形,

    故命题③正确;

    ④如图,设中点为连接

    由③得

    ∴四边形为平行四边形,

    同理四边形为平行四边形,

    平面平面

    平面

    平面

    故命题④正确.

    故答案为:①②③④.

    【典例6】2019·兴仁市凤凰中学期末)如图,在正方体中,的中点,分别是的中点.求证:

    1)直线平面

    2)平面平面.

    【答案】1)证明见解析;(2)证明见解析.

    【解析】

    1)如图,

    连接分别是的中点,.

    平面平面

    所以直线平面.

    2)连接分别是的中点,.

    平面,平面平面.

    平面平面

    ∴平面平面.

    【规律方法】

    1.证明线面平行的常用方法与思路

    (1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,解题的思路是利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.

    (2)应用线面平行性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.

    2.判定面面平行的四种方法

    (1)利用定义:即证两个平面没有公共点(不常用).

    (2)利用面面平行的判定定理(主要方法).

    (3)利用垂直于同一条直线的两平面平行(客观题可用).

    (4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).

    3.面面平行的应用

    (1)两平面平行,构造与之相交的第三个平面,可得交线平行.

    (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.

    4.在解决线面、面面平行的判定时,一般遵循从低维高维的转化,其转化关系为

    在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于模式化.

    【变式探究】

    1.2021·浙江高一期末)已知是两条不同的直线,是三个不同的平面,(   

    A.若,则

    B.若,则

    C.若,则

    D.若,则

    【答案】C

    【解析】

    根据线面位置关系的判定定理和性质定理,逐项判定,即可求解.

    【详解】

    对于A中,若,则,所以A不正确;

    对于B中,若,则可能为相交平面,所以B不正确;

    对于C中,假设

    在平面内任取一定,分别作

    因为,根据面面垂直的性质定理,可得,

    又由,所以,且,所以,所以C正确.

    对于D中,若,只有当相交时,才能得到,所以D不正确.

    故选:C.

    2.【多选题】2021·江苏省镇江中学高一月考)设表示不同直线,表示不同平面,以下推理不正确的是(   

    A.若,则

    B.若,则

    C.若,则

    D.若,则

    【答案】ABC

    【解析】

    对于A,B,C举出反例即可;对于D根据线面平行和面面平行的判定定理和性质定理判断即可.

    【详解】

    对于A,若,则,故A不正确;

    对于B,若,则异面,故B不正确;

    对于C,若,则相交,故C不正确;

    对于D,若,则.,又因为,则;若,则.D正确.

    故选:ABC

    【易错提醒】

    1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.

    2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.

    3.解题中注意符号语言的规范应用.

     

    相关试卷

    专题8.4 直线、平面平行的判定及性质(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题8.4 直线、平面平行的判定及性质(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题84直线平面平行的判定及性质原卷版docx、专题84直线平面平行的判定及性质解析版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。

    (课标全国版)高考数学第一轮复习讲练测 第35讲 直线、平面平行的判定及性质(讲+练)原卷版+解析: 这是一份(课标全国版)高考数学第一轮复习讲练测 第35讲 直线、平面平行的判定及性质(讲+练)原卷版+解析,文件包含课标全国版高考数学第一轮复习讲练测第35讲直线平面平行的判定及性质讲原卷版+解析docx、课标全国版高考数学第一轮复习讲练测第35讲直线平面平行的判定及性质练原卷版+解析docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    新高考数学一轮复习讲练测专题8.5直线、平面垂直的判定及性质(练)(含解析): 这是一份新高考数学一轮复习讲练测专题8.5直线、平面垂直的判定及性质(练)(含解析),共30页。试卷主要包含了【多选题】等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map