终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学一轮复习提升练习考向44 排列、组合 (含解析)

    立即下载
    加入资料篮
    新高考数学一轮复习提升练习考向44 排列、组合 (含解析)第1页
    新高考数学一轮复习提升练习考向44 排列、组合 (含解析)第2页
    新高考数学一轮复习提升练习考向44 排列、组合 (含解析)第3页
    还剩17页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习提升练习考向44 排列、组合 (含解析)

    展开

    这是一份新高考数学一轮复习提升练习考向44 排列、组合 (含解析),共20页。
    考向44 排列、组合

    1.(2021·全国·高考真题(理))将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
    A. B. C. D.
    【答案】C
    【分析】
    采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.
    【详解】
    将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,
    若2个0相邻,则有种排法,若2个0不相邻,则有种排法,
    所以2个0不相邻的概率为.
    故选:C.
    2.(2021·山东·高考真题)某值日小组共有5名同窗,假设任意安排3名同窗负责教室内的地面卫生,其余2名同窗负责教室外的走廊卫生,那么不同的安排方式种数是( )
    A.10 B.20 C.60 D.100
    【答案】A
    【分析】
    根据组合的定义计算即可.
    【详解】
    从5人当选取3人负责教室内的地面卫生,共有种安排方式.(选取3人后剩下2名同窗干的活就定了)
    故选:A


    1.解决排列问题的主要方法有:
    (1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.
    (2)解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.
    (3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.
    (4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.
    2.组合问题的限制条件主要体现在取出的元素中“含”或“不含”某些元素,在解答时可用直接法,也可用间接法.用直接法求解时,要注意合理地分类或分步;用间接法求解时,要注意题目中“至少”“至多”等关键词的含义,做到不重不漏.
    3.先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成.
    第一步:选元素,即选出符合条件的元素;
    第二步:进行排列,即把选出的元素按要求进行排列;
    第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.


    1.排列
    (1)排列的定义
    一般地,从n个不同元素中取出个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
    (2)排列数、排列数公式
    从n个不同元素中取出个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示.
    一般地,求排列数可以按依次填m个空位来考虑:
    假设有排好顺序的m个空位,从n个元素中任取m个去填空,一个空位填1个元素,每一种填法就对应一个排列,而要完成“这件事”可以分为m个步骤来实现.
    根据分步乘法计数原理,全部填满m个空位共有种填法.
    这样,我们就得到公式,其中,且.这个公式叫做排列数公式.
    n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,这时公式中,即有,就是说,n个不同元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用表示.所以n个不同元素的全排列数公式可以写成.另外,我们规定1.
    于是排列数公式写成阶乘的形式为,其中,且.
    注意:排列与排列数是两个不同的概念,一个排列是指“按照一定的顺序排成一列”,它是具体的一件事,排列数是指“从n个不同元素中取出个元素的所有不同排列的个数”,它是一个数.
    2.组合
    (1)组合的定义
    一般地,从n个不同元素中取出个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.
    (2)组合数、组合数公式
    从n个不同元素中取出个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.
    ,其中,且.这个公式叫做组合数公式.
    因为,所以组合数公式还可以写成,其中,且.
    另外,我们规定.
    【知识拓展】
    组合数的性质
    性质1:.
    性质1表明从n个不同元素中取出m个元素的组合,与剩下的个元素的组合是一一对应关系.
    性质2:.
    性质2表明从个不同元素中任取m个元素的组合,可以分为两类:第1类,取出的m个元素中不含某个元素a的组合,只需在除去元素a的其余n个元素中任取m个即可,有个组合;第2类,取出的m个元素中含有某个元素a的组合,只需在除去a的其余n个元素中任取个后再取出元素a即可,有个组合.



    1.(2021·全国·模拟预测(理))由于全球新冠肺炎疫情呈高发态势,我国零星散发病例和局部地区聚集性疫情明显增加,为了全面抗击,做到网格化管理,要求在2021年1月28日至3月8日春运期间必须持新冠病毒核酸检测阴性证明才能出行.若甲、乙两人去,,,四个医院中的一个做检测,则他们不在同一个医院做检测的概率为( )
    A. B. C. D.
    2.(2021·河北·模拟预测)5名同学到甲、乙、丙3个社区协助工作人员调查新冠疫苗的接种情况,若每个社区至少有1名同学,每名同学只能去1个社区,且分配到甲、乙两个社区的人数不同,则不同的分配方法的种数为( )
    A.60 B.80 C.100 D.120
    3.(2021·浙江嘉兴·模拟预测)现有7人排队接种新冠疫苗,若要求甲在乙的前面,乙在丙的前面,且丙丁相邻,则有______种不同的排队方法.(用数字作答)
    4.(2021·广东·模拟预测)“学习强国”是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质学习平台.该平台设有“阅读文章”,“视听学习”等多个栏目.假设在这些栏目中某时段更新了2篇文章和2个视频,一位学员准备学习这2篇文章和这2个视频,要求这2篇文章学习顺序不相邻,则不同的学法有________种.(用数字作答)


    1.(2021·河北衡水中学模拟预测)“女排精神”是中国女子排球队顽强战斗、勇敢拼搏精神的总概括,她们在世界杯排球赛中凭着顽强战斗、勇敢拼搏的精神,五次获得世界冠军,为国争光.2019年女排世界杯于9月14日至9月29日在日本举行,中国队以上届冠军的身份出战,最终以11战全胜且只丢3局的成绩成功卫冕世界杯冠军,为中华人民共和国70华诞献上最及时的贺礼.朱婷连续两届当选女排世界杯MVP,她和颜妮、丁霞、王梦洁共同入选最佳阵容,赛后4人和主教练郎平站一排合影留念,已知郎平站在最中间,她们4人随机站于两侧,则朱婷和王梦洁站于郎平同一侧的概率为( )
    A. B. C. D.
    2.(2021·全国·模拟预测(理))现有甲、乙、丙、丁四名义工到,,三个不同的社区参加公益活动.若每个社区至少分一名义工,则甲单独被分到社区的概率为( )
    A. B. C. D.
    3.(2021·河南南阳·模拟预测(理)),,,,,六名同学进行劳动技术比赛,决出第名到第名的名次.,,去询问成绩,回答者对说:“很遗憾,你们三个都没有得到冠军.”对说:“你的名次在之前.”对说:“你不是最后一名.”从以上的回答分析,人的名次排列情况种数共有( )
    A. B. C. D.
    4.(2021·江苏南通·模拟预测)在新型冠状病毒肺炎疫情联防联控期间,某居委会从辖区内甲、乙、丙三个小区中选取6人做志愿者,协助防控和宣传工作.若每个小区至少选取1人做志愿者,则不同的选取方法有( )
    A.10种 B.20种 C.540种 D.1080种
    5.(2021·四川·石室中学一模(理))某城市的汽车牌照号码由个英文字母后接个数字组成,其中个数字互不相同的牌照号码共有( )个
    A. B. C. D.
    6.(2021·湖南长沙·模拟预测)一次表彰大会上,计划安排这5名优秀学生代表上台发言,这5名优秀学生分别来自高一、高二和高三三个年级,其中高一、高二年级各2名,高三年级1名.发言时若要求来自同一年级的学生不相邻,则不同的排法共有( )种.
    A.36 B.48 C.72 D.120
    7.(2021·浙江·学军中学模拟预测)杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A、B、C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A、B项目,乙不能参加B、C项目,那么共有__________种不同的选拔志愿者的方案.(用数字作答)
    8.(2021·浙江·模拟预测)有6张卡片分别写有数字1,1,1,2,3,4,从中任取4张,可排出不同的四位数的个数是___________.(用数字作答)
    9.(2021·浙江·模拟预测)某重点中学安排甲、乙在内的5名骨干教师到3所乡镇学校开展支教帮扶活动,每所学校至少安排一名教师,每个教师也只能去一所学校,若甲、乙2名教师不去同一所学校,则不同的安排方法有______种.
    10.(2021·辽宁沈阳·三模)安排高二年级一、二两个班一天的数、语、外、物、体,一班的化学及二班的政治各六节课.要求体育课两个班一起上,但不能排在第一节;由于选课之故,一班的化学和二班的政治要安排在同一节;其他语、数、外、物四科由同一任课教师分班上课,则不同的排课表方法共有__________种.
    11.(2021·江西·模拟预测(理))新冠疫情防控期间,某中学安排甲、乙,丙等7人负责某个周一至周日的师生体温情况统计工作,每天安排一人,且每人负责一天.若甲、乙、丙三人中任意两人都不能安排在相邻的两天,且甲安排在乙,丙之间,则不同的安排方法有___________种(用数字作答).
    12.(2021·宁夏·石嘴山市第三中学模拟预测(理))2020年是全面建成小康社会的目标实现之年,也是全面打赢脱贫攻坚战的收官之年.为更好地将“精准扶贫”落到实处,某地安排7名干部(3男4女到三个贫困村调研走访,每个村安排男、女干部各1名,剩下1名干部负责统筹协调,则不同的安排方案有_______种(用具体数字回答).



    1.(2020·山东·高考真题)现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是( )
    A.12 B.120 C.1440 D.17280
    2.(2021·全国·高考真题(文))将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
    A.0.3 B.0.5 C.0.6 D.0.8
    3.(2014·全国·高考真题(理))4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为
    A. B. C. D.
    4.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )
    A.2种 B.3种 C.6种 D.8种
    5.(2021·全国·高考真题(理))将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
    A.60种 B.120种 C.240种 D.480种
    6.(2020·海南·高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
    A.120种 B.90种
    C.60种 D.30种
    7.(2019·全国·高考真题(文))两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是
    A. B. C. D.
    8.(2019·全国·高考真题(理))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是

    A. B. C. D.
    9.(2020·全国·高考真题(理))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
    10.(2018·浙江·高考真题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)
    11.(2018·全国·高考真题(理))从位女生,位男生中选人参加科技比赛,且至少有位女生入选,则不同的选法共有_____________种.(用数字填写答案)
    12.(2017·浙江·高考真题)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)




    1.【答案】C
    【分析】
    先求出总的基本事件数,再求出符合条件的基本事件数,利用古典概型的概率公式求解即可.
    【详解】
    解:由题意可知,甲、乙两人去,,,四个医院做检测的所有情况数为,
    而不在同一医院做检测的所有种数为,
    所以所求概率为.
    故选:C.
    2.【答案】C
    【分析】
    根据题意,需要将5人分为3组,按分组的人数不同,分2种情况讨论,求出每种情况的分配方法数目,由加法原理计算可得答案.
    【详解】
    根据题意,分2种情况讨论:
    ①将5人分为1、1、3的三组,
    此时5人分三组有种分组方法,
    分配到甲、乙两个社区的人数不同,有种情况,
    则此时有种分配方法;
    ②将5人分为1、2、2的三组,
    此时5人分三组有种分组方法,
    分配到甲、乙两个社区的人数不同,有种情况,
    则此时有种分配方法;
    则有种分配方法,
    故选:C
    3.【答案】240
    【分析】
    丙丁捆绑作为一个人,7个人7个位置变成6个位置,从中选3个安置甲乙丙(丁),其他3个任意排列,由此可得结论.
    【详解】
    丙丁捆绑作为一个人,7个人7个位置变成6个位置,从中选3个安置甲乙丙(丁),其他3个任意排列,方法数为.
    故答案为:240.
    4.【答案】12
    【分析】
    先对视频进行排序,再将文章进行插空即可求解.
    【详解】
    解:先将个视频进行排序,再将2篇文章进行插空,
    则共有种排法.
    故答案为:.


    1.【答案】B
    【分析】
    利用排列组合与概率的定义,进行计算即可
    【详解】
    4人和主教练郎平站一排合影留念,郎平站在最中间,她们4人随机站于两侧,则不同的排法有种,若要使朱婷和王梦洁站于郎平同一侧,则不同的排法有种,所以所求概率
    故选:B
    2. 【答案】A
    【分析】
    利用排列组合求得每个社区至少分一名义工的方法数,然后求出其中甲被分到社区的方法数,利用概率公式求得结果.
    【详解】
    依题意得,甲、乙、丙、丁到三个不同的社区参加公益活动,每个社区至少分一名义工的方法数是,其中甲被分到社区的方法数是,因此甲被分到社区的概率.
    故选:A.
    3. 【答案】A
    【分析】
    先选冠军有种可能,最后一名有种可能,再排剩下个位置,即得解.
    【详解】
    因为,,都没有得到冠军,所以从,,中选一个为冠军,有种可能.
    因为不是最后一名,的名次又在之前,所以最后一名有种可能,剩下个位置.
    因为,定序,所以有种可能,
    所以人的名次排列有种不同情况.
    故选:A
    4. 【答案】C
    【分析】
    首先分析将6个人分为三小组且每小组至少有一人,则可能分法有:三种情况,每种情况利用分步计数原理计算情况数,最后相加即可.
    【详解】
    解:①当6个人分为2,2,2三小组,分别来自3个小区,共有种,
    ②当6个人分为4,1,1三小组时,分别来自3个小区,共有种,
    ③当6个人分为3,2,1三小组时,分别来自3个小区,共有种,
    综上,本题的选法共有,
    故选:C.
    【点睛】
    (1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
    (2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.
    5. 【答案】D
    【分析】
    先求从26个英文字母中选出2个英文字母的方法数,再求出后接4个数字组成的方法数,由分步计数原理即可得结论.
    【详解】
    解:先从26个英文字母中选出2个英文字母的方法数为,后接4个数字组成的方法数为,所以由分步计数原理可得不相同的牌照号码共有个.
    故选:D.
    6.【答案】B
    【分析】
    把两个高一学生排列,然后按一个高三学生是否在两个高一学生之间分类,在中间,把2个高二学生插入四个空档;不在时,选一个高二排在中间,然后在两边选一位置插入高三学生,再插入另一高二学生,由此可得排法数.
    【详解】
    先排高一年级学生,有种排法,①若高一年级学生中间有高三学生,有种排法;②若高一学生中间无高三学生,有种排法,所以共有种排法.
    故选:B.
    【点睛】
    关键点点睛:本题考查排列组合的应用,解题关键是确定完成事件的方法,是分类还是分步.不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空中.
    7.【答案】
    【分析】
    由题意,按照甲乙是否参加志愿活动分4种情况讨论,求出每种情况的选拔方案数量,再由加法计数原理相加计算.
    【详解】
    根据题意,分4种情况讨论:①甲乙都不参加志愿活动,在剩下的4人中任选3人参加即可,有种选拔方法;
    ②甲参加但乙不参加志愿活动,甲只能参加C项目,在剩下的4人中任选2人参加A、B项目,有种选拔方法;
    ③乙参加但甲不参加志愿活动,乙只能参加A项目,在剩下的4人中任选2人参加B、C项目,有种选拔方法;
    ④甲乙都参加志愿活动,在剩下的4人中任选1人参加B项目,有种选拔方法,则有.
    故答案为:
    8.【答案】72
    【分析】
    按构成的四位数中含数字1的个数分类求解即得.
    【详解】
    完成构成四位数这件事有分三类:
    四个数字中有1个“1”:共有个;
    四个数字中有2个“1”:共有;
    四个数字中有3个“1”:共有,
    由加法计数原理得排出不同的四位数的个数是24+36+12=72个.
    故答案为:72
    【点睛】
    思路点睛:解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
    9.【答案】114
    【分析】
    用间接法. 先求出不考虑条件“甲、乙2名教师不去同一所学校”的不同安排方法,再求出甲、乙2名教师去同一所学校的不同安排方法,相减即可得到结果.
    【详解】
    不考虑条件“甲、乙2名教师不去同一所学校”,则不同的安排方法有(种).若甲、乙2名教师去同一所学校,则不同的安排方法有(种),所以满足题意的安排方法有(种).
    故答案为:114.
    【点睛】
    方法点睛:解答受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.
    10.【答案】5400
    【分析】
    先安排体育课(不能在第一节),再安排化学和政治在同一节,剩下4门主课,先安排一班,再安排二班即可.
    【详解】
    先安排体育课(不能在第一节)有种,化学和政治在同一节有种,
    剩下4门主课,不能同时上一种课,先安排一班有种,
    不妨设第1,2,3,4节的顺序,
    二班第一节,一班有3种选项第2,3,4节,
    对应一班选出的某节课,比如第2节,
    在一班上第2节时,有第1,3节,第1,4节,第3,4节3种,
    故不同的排课表方法共有种,
    故答案为:5400
    【点睛】
    方法点睛:排列、组合问题的求解方法与技巧
    (1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.
    11.【答案】480
    【分析】
    安排方式为先让余下的四人排列,然后利用插空法选出3个空位,然后把甲放中间进行排列即可.
    【详解】
    选将甲、乙、丙之外的四人进行排列,共有种方法,再用甲、乙、丙插空,甲在中间,有种方法,故共有.
    故答案为:480
    12.【答案】144
    【分析】
    先安排男干部,再安排女干部,由排列组合以及分步乘法计数原理得出答案.
    【详解】
    ∵每个村男、女干部各1名,∴可先安排男干部,共种,再安排女干部,共有种,∴共有种不同的安排方案
    故答案为:144.
    【点睛】
    关键点睛:在从4名女干部中选3人到三个贫困村调研走访时,关键是按照先选后排的方法进行处理.



    1.【答案】C
    【分析】
    首先选3名男生和2名女生,再全排列,共有种不同安排方法.
    【详解】
    首先从4名男生和3名女生中,任选3名男生和2名女生,共有种情况,
    再分别担任5门不同学科的课代表,共有种情况.
    所以共有种不同安排方法.
    故选:C
    2.【答案】C
    【分析】
    利用古典概型的概率公式可求概率.
    【详解】
    解:将3个1和2个0随机排成一行,可以是:

    共10种排法,
    其中2个0不相邻的排列方法为:

    共6种方法,
    故2个0不相邻的概率为,
    故选:C.
    3.【答案】D
    【详解】
    试题分析:由已知,4位同学各自在周六、周日两天中任选一天参加公益活动共有种不同的结果,而周六、周日都有同学参加公益活动有两类不同的情况:(1)一天一人,另一天三人,有种不同的结果;(2)周六、日各2人,有种不同的结果,故周六、周日都有同学参加公益活动有种不同的结果,所以周六、周日都有同学参加公益活动的概率为,选D.
    【考点定位】1、排列和组合;2、古典概型的概率计算公式.
    4.【答案】C
    【分析】
    首先将3名学生分成两个组,然后将2组学生安排到2个村即可.
    【详解】
    第一步,将3名学生分成两个组,有种分法
    第二步,将2组学生安排到2个村,有种安排方法
    所以,不同的安排方法共有种
    故选:C
    【点睛】
    解答本类问题时一般采取先组后排的策略.
    5.【答案】C
    【分析】
    先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.
    【详解】
    根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,
    故选:C.
    【点睛】
    本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.
    6.【答案】C
    【分析】
    分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.
    【详解】
    首先从名同学中选名去甲场馆,方法数有;
    然后从其余名同学中选名去乙场馆,方法数有;
    最后剩下的名同学去丙场馆.
    故不同的安排方法共有种.
    故选:C
    【点睛】
    本小题主要考查分步计数原理和组合数的计算,属于基础题.
    7.【答案】D
    【分析】
    男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.
    【详解】
    两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是.故选D.
    【点睛】
    本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.
    8.【答案】A
    【分析】
    本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.
    【详解】
    由题知,每一爻有2种情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.
    【点睛】
    对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.
    9.【答案】
    【分析】
    根据题意,有且只有2名同学在同一个小区,利用先选后排的思想,结合排列组合和乘法计数原理得解.
    【详解】
    4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学
    先取2名同学看作一组,选法有:
    现在可看成是3组同学分配到3个小区,分法有:
    根据分步乘法原理,可得不同的安排方法种
    故答案为:.
    【点睛】
    本题主要考查了计数原理的综合应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.
    10.【答案】1260.
    【详解】
    分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.
    详解:若不取零,则排列数为若取零,则排列数为
    因此一共有个没有重复数字的四位数.
    点睛:求解排列、组合问题常用的解题方法:
    (1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.
    11.【答案】
    【分析】
    首先想到所选的人中没有女生,有多少种选法,再者需要确定从人中任选人的选法种数,之后应用减法运算,求得结果.
    【详解】
    根据题意,没有女生入选有种选法,从名学生中任意选人有种选法,
    故至少有位女生入选,则不同的选法共有种,故答案是.
    【点睛】
    该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有名女生和有两名女生分别有多少种选法,之后用加法运算求解.
    12.【答案】660
    【详解】
    第一类,先选女男,有种,这人选人作为队长和副队有种,故有 种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.



    相关试卷

    新高考数学一轮复习提升练习考向42 抛物线 (含解析):

    这是一份新高考数学一轮复习提升练习考向42 抛物线 (含解析),共29页。

    新高考数学一轮复习提升练习考向41 双曲线 (含解析):

    这是一份新高考数学一轮复习提升练习考向41 双曲线 (含解析),共24页。

    新高考数学一轮复习提升练习考向40 椭圆 (含解析):

    这是一份新高考数学一轮复习提升练习考向40 椭圆 (含解析),共30页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map