初中数学人教版九年级上册25.3 用频率估计概率精品课后练习题
展开2023年人教版数学九年级上册
《25.3 用频率估计概率》基础巩固卷
一 、选择题
1.下列说法正确的是( )
A.“任意画一个三角形,其内角和为360°”是随机事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次
C.抽样调查选取样本时,所选样本可按自己的喜好选取
D.检测某城市的空气质量,采用抽样调查法
2.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )
A. B. C. D.
3.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到的卡片上算式正确的概率是( )
A. B. C. D.1
4.甲、乙两名同学在一次大量重复试验中,统计了某一结果出现的频率,绘制出的统计图如图所示,符合这一结果的试验可能是( )
A.掷一枚质地均匀的骰子,出现1点朝上的频率
B.任意写一个正整数,它能被3整除的频率
C.抛一枚硬币,出现正面朝上的频率
D.从一个装有2个白球和1个红球的袋子中任取一球,取到白球的频率
5.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是( )
A.0.1 B.0.2 C.0.3 D.0.4
6.从一批电视机中随机抽取10台进行质检,其中一台是次品,下列说法正确的是( )
A.次品率小于10% B.次品率大于10%
C.次品率接近10% D.次品率等于10%
7.在一个不透明的盒子里装着若干个白球,小明想估计其中的白球数,于是他放入10个黑球,搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,得到如下数据:
摸球的次数n | 20 | 40 | 60 | 80 | 120 | 160 | 200 |
摸到白球的次数m | 15 | 33 | 49 | 63 | 97 | 128 | 158 |
摸到白球的频率m/n | 0.75 | 0.83 | 0.82 | 0.79 | 0.81 | 0.80 | 0.79 |
估计盒子里白球的个数为( )
A.8 B.40 C.80 D.无法估计
8.绿豆在相同条件下的发芽试验,结果如下表所示:
则绿豆发芽的概率估计值是( )
A.0.96 B.0.95 C.0.94 D.0.90
9.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是( )
试验种子数(粒) | 50 | 200 | 500 | 1000 | 3000 |
发芽频数m | 45 | 188 | 476 | 951 | 2850 |
发芽频率m/n | 0.9 | 0.94 | 0.952 | 0.951 | 0.95 |
A.0.8 B.0.9 C.0.95 D.1
10.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:
通话时间x/min | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 |
频数(通话次数) | 20 | 16 | 9 | 5 |
则通话时间不超过15 min的频率为( )
A.0.1 B.0.4 C.0.5 D.0.9
二 、填空题
11.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有 个.
12.某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是 kg.
13.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 .
14.下表记录了某种幼树在一定条件下移植成活情况
由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1).
15.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到0.1).
投篮次数(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次数(m) | 28 | 60 | 78 | 104 | 123 | 152 | 251 |
投中频率(m/n) | 0.56 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
16.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的 棵数n | 1000 | 1500 | 2500 | 4000 | 8000 | 15000 | 20000 | 30000 |
成活的 棵数m | 865 | 1356 | 2220 | 3500 | 7056 | 13170 | 17580 | 26430 |
成活的 频率m/n | 0.865 | 0.904 | 0.888 | 0.875 | 0.882 | 0.878 | 0.879 | 0.881 |
估计该种幼树在此条件下移植成活的概率为_________.
三 、解答题
17.研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:
(1)请你估计第一小组和第二小组所得的概率分别是多少?
(2)你认为哪一个小组的结果更准确?为什么?
18.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球.怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次随机摸出一个球,放回盒中,再继续.
活动结果:摸球试验一共做了50次,统计结果如下表:
球的颜色 | 无记号 | 有记号 | ||
红色 | 黄色 | 红色 | 黄色 | |
摸到的次数 | 18 | 28 | 2 | 2 |
推测计算.由上述的摸球试验可推算:
(1)盒中红球、黄球各占总球数的百分比是多少?
(2)盒中有红球多少个?
19.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(如图所示).下表是活动进行中的一组统计数据:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1 000 |
落在“铅笔”区域的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”区域的频率 |
|
|
|
|
|
|
(1)计算并完成表格.
(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?
(3)假如你去转动该转盘一次,你获得哪种奖品的机会大?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?
20.小颖和小红两名同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.
(1)她们在一次试验中共掷骰子60次,试验的结果如下:
①填空:此次试验中“5点朝上”的频率为________;
②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?
(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图法加以说明,并求出其概率.
21.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
22.某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2∶3∶4∶6∶4∶1.第三组的频数是12.请你回答:
(1)本次活动共有____件作品参赛;
(2)上交作品最多的组有作品____件;
(3)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?
(4)对参赛的每一件作品进行编号并制作成背面完全一致的卡片,背面朝上放置,随机抽出一张卡片,抽到第四组作品的概率是多少?
23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近 ;(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ;
(3)试验估算这个不透明的盒子里黑球有多少只?
答案
1.D
2.B
3.B
4.B
5.A
6.C
7.B
8.B
9.C
10.D
11.答案为:3.
12.答案为:560.
13.答案为:100.
14.答案为:0.9.
15.答案为:0.5.
16.答案为:0.880
17.解:(1)根据题意,因为次数越多,就越精确,
所以选取试验次数最多的进行计算可得:第一小组所得的概率是0.4;
第二小组所得的概率是0.41.
(2)不知道哪一个更准确.因为试验数据可能有误差,不能准确说明偏向.
18.解:(1)由题意可知,50次摸球试验中,出现红球20次,黄球30次,
所以红球占总球数的百分比约为20÷50=40%,
黄球占总球数的百分比约为30÷50=60%.
所以红球约占40%,黄球约占60%.
(2)由题意可知,50次摸球试验中,出现有记号的球4次,
所以总球数约有=100(个).
所以红球约有100×40%=40(个).
19.解:(1)如下表所示:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1 000 |
落在“铅笔”区域的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”区域的频率 | 0.68 | 0.74 | 0.68 | 0.69 | 0.705 | 0.701 |
(2)当n很大时,落在“铅笔”区域的频率将会接近0.7.
(3)获得铅笔的机会大.
(4)扇形的圆心角约是0.7×360°=252°.
20.解:(1)①∵试验中“5点朝上”的次数为20,总次数为60,
∴此次试验中“5点朝上”的频率为=.②小红的说法不正确.
理由:∵利用频率估计概率的试验次数必须比较多,重复试验,频率才会慢慢接近概率.而她们的试验次数太少,没有代表性,
∴小红的说法不正确.
(2)列表如下:
小红和小颖 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |
3 | 4 | 5 | 6 | 7 | 8 | 9 |
4 | 5 | 6 | 7 | 8 | 9 | 10 |
5 | 6 | 7 | 8 | 9 | 10 | 11 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
由表格可以看出,共有36种等可能的结果,其中点数之和为7的结果数最多,有6种,
∴两枚骰子朝上的点数之和为7时的概率最大,为=.
21.解:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3。
从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个
(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)="1/20=0.05
(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=9/20=0.45
(3) 事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次。则一天可赚90×1-10×5=40,每月可赚1200元。
22.解:(1)12÷[4÷(2+3+4+6+4+1)]=60(件);
(2)(12÷4)×6=18(件);
(3)第四组获奖率10÷18=,第六组获奖率,
又因为<,所以第六组获奖率高;
(4)P(第四组)==,
所以抽到第四组作品的概率是.
23.解:(1)∵摸到白球的频率为(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,
∴当实验次数为5000次时,摸到白球的频率将会接近0.6.
(2)∵摸到白球的频率为0.6,
∴假如你摸一次,你摸到白球的概率P(白球)=0.6.
(3)盒子里黑颜色的球有40×(1﹣0.6)=16.
初中25.3 用频率估计概率课时作业: 这是一份初中25.3 用频率估计概率课时作业,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册25.3 用频率估计概率练习: 这是一份初中数学人教版九年级上册25.3 用频率估计概率练习,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版九年级上册25.3 用频率估计概率达标测试: 这是一份人教版九年级上册25.3 用频率估计概率达标测试,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。