2011年至2018年临沂市八年中考数学试卷
展开2011年山东省临沂市中考数学试卷
一、选择题(本大题共14小题,毎小题3分,共42分)
1、下列各数中,比﹣1小的数是( )
A、0 B、1 C、﹣2 D、2
2、下列运算中正确的是( )
A、(﹣ab)2=2a2b2 B、(a+b)2=a2+1
C、a6÷a2=a3 D、2a3+a3=3a3
3、如图.己知AB∥CD,∠1=70°,则∠2的度数是( )
A、60° B、70° C、80° D、110
4、计算212﹣613+8的结果是( )
A、32﹣23 B、5﹣2 C、5﹣3 D、22
5、化简(x﹣2x﹣1x)÷(1﹣1x)的结果是( )
A、1x B、x﹣1 C、x﹣1x D、xx﹣1
6、如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是( )
A、2cm B、3cm C、4cm D、221cm
7、在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是( )
A、这组数据的中位数是4.4 B、这组数据的众数是4.5
C、这组数据的平均数是4.3 D、这组数据的极差是0.5
8、不等式组&x2+1≥x﹣3&x3﹣1>0的解集是( )
A、x≥8 B、3<x≤8 C、0<x<2 D、无解
9、如图是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( )
A、60° B、90° C、120° D、180°
10、如图,A、B是数轴上两点.在线段AB上任取一点C,则点C到表示﹣1的点的距离不大于2的概率是( )
A、12 B、23 C、34 D、45
11、如图.△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )
A、23 B、33 C、4 D、43
12、如图,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是( )
A、12 B、14 C、16 D、18
13、如图,△ABC中,cosB=22,sinC=35,AC=5,则△ABC的面积是( )
A、212 B、12 C、14 D、21
14、甲、乙两同学同时从400m环形跑道上的同一点出犮,同向而行.甲的速度为6m/s,乙的速度为4m/s.设经过x(单位:s)后,跑道上此两人间的较短部分的长度为y(单位:m).则y与x(0≤x≤300)之间的函数关系可用图象表示为( )
A、 B、C、 D、
二、填空题(本大题共5小题.毎小越3分.共15分)把答案填在题中横线上.
15、分解因式:9a﹣ab2= .
16、方程xx﹣3﹣12x﹣6=12的解是 .
17、有3人携带会议材料乘坐电梯,这3人的体重共210kg.毎梱材料重20kg.电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载 捆材枓.
18、如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为 .
19、如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这样的图形中共有 个等腰梯形.
三、开动脑筋,你一定能做对!(本大题共3小题,共20分)
20、某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数分布表:
类别
频数(人数)
频率
文学
m
0.42
艺术
22
0.11
科普
66
n
其他
28
合计
1
(1)表中m= ,n= ;
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人?
21、去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?
22、如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.
(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.
四、认臭思考.你一定能成功!(本大题共2小题.共19分)
23、如图.以O为圆心的圆与△AOB的边AB相切于点C.与OB相交于点D,且OD=BD,己知sinA=25,AC=21.(1)求⊙O的半径:
(2)求图中阴影部分的面枳.
24、如图,一次函数y=kx+b与反比例函数y=mx的图象相较于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>mx的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
五、相信自己,加油呀!(本大题共2小题,共24分)
25、如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.
(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求EFEG的值.
26、如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
2011年山东省临沂市中考数学试卷答案
一、1、C.2、D.3、D.4、A.5、B.6、C.7、C.8、B、9、B.10、D.11、A.12、C.13、A.14C.
二、15、a(3+b)(3﹣b).16、x=﹣2.17、42.18、6.19、100.
三、20、解:(1)学生总数:22÷0.11=200,
m=200﹣22﹣66﹣28=84,
n=66÷200=0.33,
(2)从频数分布表中可以看出:最喜爱阅读文学类读物的学生最多84人,最喜爱阅读艺术类读物的学生最少22人.
(3)1200×0.33=396(人).
21、解:灌溉用井打x口,生活用井打y口,由题意得
&x+y=58&4x+0.2y=80,
解得&x=18&y=40.
答:灌溉用井打18口,生活用井打40口.
22、证明:(1)∵AB=AC,
∴∠B=∠BCA,
∵AD平分∠FAC,
∴∠FAD=∠B,
∴AD∥BC,
∴∠D=∠DCE,
∵CD平分∠ACE,
∴∠ACD=∠DCE,
∴∠D=∠ACD,
∴AC=AD;
证明:(2)∵∠B=60°,AB=AC,
∴△ABC为等边三角形,
∴AB=BC,
∴∠ACB=60°,
∠FAC=∠ACE=120°,
∴∠BAD=∠BCD=120°,
∴∠B=∠D=60°,
∴四边形ABCD是平行四边形,
∵AB=BC,
∴平行四边形ABCD是菱形.
四、
23、
解:(1)连接OA,
∵以O为圆心的圆与△AOB的边AB相切于点C.
∴CO⊥AB,
∵sinA=25=COAO,
∵AC=21.
∴假设CO=2x,AO=5x,
4x2+21=25x2,
解得:x=1,
∴CO=2,
∴⊙O的半径为2;
(2)∵⊙O的半径为2;
∴DO=2,
∵DO=DB,
∴BO=4,
∴BC=23,
∴2CO=BO,
∵O⊥BC,
∴∠CBO=30°,
∠COD=60°,
图中阴影部分的面枳为:S△OCB﹣S扇形COD=12×23×2﹣60π×22360=23﹣23π.
24、解:(1)∵点A(2,3)在y=mx的图象上,
∴m=6,
∴反比例函数的解析式为:y=6x,
∴n=6﹣3=﹣2,
∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,
∴&3=2k+b&﹣2=﹣3k+b,
解得:&k=1&b=1,
∴一次函数的解析式为:y=x+1;
(2)﹣3<x<0或x>2;
(3)以BC为底,则BC边上的高为3+2=5,
∴S△ABC=12×2×5=5.
五、25、(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,
∴∠DEF=∠GEB,
又∵ED=BE,
∴Rt△FED≌Rt△GEB,
∴EF=EG;
(2)成立.
证明:如图,过点E分别作BC、CD的垂线,垂足分别为H、I,
则EH=EI,∠HEI=90°,
∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,
∴∠IEF=∠GEH,
∴Rt△FEI≌Rt△GEH,
∴EF=EG;
(3)解:如图,过点E分别作BC、CD的垂线,垂足分别为M、N,
则∠MEN=90°,
∴EM∥AB,EN∥AD.
∴△CEN∽△CAD,△CEM∽△CAB,
∴NEAD=CECA,EMAB=CECA,
∴NEAD=EMAB,即ENEM=ADAB=ba,
∵∠IEF+∠FEM=∠GEM+∠FEM=90°,
∴∠GEM=∠FEN,
∵∠GME=∠FNE=90°,
∴△GME∽△FNE,
∴EFEG=ENEM,
∴EFEG=ba.
26、解(1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(﹣2,0),B(﹣3,3),O(0,0)可得
&4a﹣2b+c=0&9a﹣3b+c=3&c=0,
解得&a=1&b=2&c=0.
故抛物线的解析式为y=x2+2x;
(2)①当AE为边时,
∵A、O、D、E为顶点的四边形是平行四边形,
∴DE=AO=2,
则D在x轴下方不可能,
∴D在x轴上方且DE=2,
则D1(1,3),D2(﹣3,3);
②当AO为对角线时,则DE与AO互相平方,
因为点E在对称轴上,
且线段AO的中点横坐标为﹣1,
由对称性知,符合条件的点D只有一个,与点C重合,即C(﹣1,﹣1)
故符合条件的点D有三个,分别是D1(1,3),D2(﹣3,3),C(﹣1,﹣1);
(3)存在,
如上图:∵B(﹣3,3),C(﹣1,﹣1),根据勾股定理得:
BO2=18,CO2=2,BC2=20,
∴BO2+CO2=BC2.
∴△BOC是直角三角形.
假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,
设P(x,y),由题意知x>0,y>0,且y=x2+2x,
①若△AMP∽△BOC,则AMBO=PMCO,
即 x+2=3(x2+2x)
得:x1=13,x2=﹣2(舍去).
当x=13时,y=79,即P(13,79).
②若△PMA∽△BOC,则AMCO=PMBO,
即:x2+2x=3(x+2)
得:x1=3,x2=﹣2(舍去)
当x=3时,y=15,即P(3,15).
故符合条件的点P有两个,分别是P(13,79)或(3,15).
2012年临沂市中考数学试卷
一、选择题(共14小题,每小题3分,共42分)
1.-的倒数是( )
A.6 B.-6 C. D.-
2.太阳的半径大约是696000千米,用科学记数法可表示为( )
A.696×103千米 B.69.6×104千米 C.6.96×105千米 D.6.96×106千米
3.下列计算正确的是( )
A.2a2+4a2=6a4 B.(a+1)2=a2+1 C.(a2)3=a5 D.x7÷x5=x2
4.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )
A.40° B.50° C.60° D.140°
5.化简的结果是( )
A. B. C. D.
6.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )
A. B. C. D.1
7.用配方法解一元二次方程x2-4x=5时,此方程可变形为( )
A.(x+2)2 =1 B.(x-2)2 =1 C.(x+2)2 =9 D.(x-2)2 =9
8.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
9.如图是一个几何体的三视图,则这个几何体的侧面积是( )
A.18cm2 B.20cm2 C.(18+2)cm2 D.(18+4)cm2
10.关于x、y的方程组 的解是 则|m-n|的值是( )
A.5 B.3 C.2 D.1
11.如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是( )
A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD
12.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=
(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是( )
A.∠POQ不可能等于90° B.
C.这两个函数的图象一定关于x轴对称 D.△POQ的面积是(|k1|+|k2|)
13.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )
A.1 B. C. D.2
14.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为( )
A. B. C. D.
二、填空题(共5小题,每小题3分,满分15分)
15.分解因式:a-6ab+9ab2= .
16.计算:= .
17.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= °.
18.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.
19.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“∑”是求和符号,通过对以上材料的阅读,计算= .
三、解答题(共7小题,满分63分)
20.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出捐款总额的众数;
(3)该班平均每人捐款多少元?
21.某工厂加工某种产品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,求手工每小时加工产品的数量.
22.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
23.如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
24.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?
25.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.
26.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
2012年临沂市中考数学答案
一.选择题1. B2. C3. D4. B5. A6. B7. D8. A9. A10. D11. C12. D13. C14. B
二.填空题15. a(1-3b)216. 017. 7018. 319.
三.解答题
20. 解:(1)14 ÷28% =50(人).该班总人数为50人;
(2)捐款10元的人数:50-9-14-7-4=50-34=16,
图形补充如图所示,众数是10;
(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.
21. 解:设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意可得:
,
解方程得x=27,
经检验,x=27是原方程的解,
答:手工每小时加工产品27件.
22. (1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
在△ABC和△DEF中,
AC=DF, ∠A=∠D, AB=DE,
∴△ABC≌DEF(SAS),
∴BC=EF,∠ACB=∠DFE,
∴BC∥EF,
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形,
∵∠ABC=90°,AB=4,BC=3,
∴AC==5,
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,
∴△ABC∽△BGC,
∴,即,∴CG=.∵FG=CG,∴FC=2CG=,
∴AF=AC-FC=5- =,∴当AF=时,四边形BCEF是菱形.
23.(1)证明:连接OA.
∵∠B=60°,∴∠AOC=2∠B=120°,
又∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,
∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥AP,
∴AP是⊙O的切线,
(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°,
∴AD=AC•tan30°=3×= ,
∵∠ADC=∠B=60°,∴∠PAD=∠ADC-∠P=60°-30°,∴∠P=∠PAD,
∴PD=AD= .
24. (1)证明:∵b=2a,点M是AD的中点,∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°,∴∠AMB=∠DMC=45°,
∴∠BMC=90°.
(2)解:存在,理由:
若∠BMC=90°,则∠AMB=∠DMC=90°,
又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC,
又∵∠A=∠D=90°,∴△ABM∽△DMC,∴,
设AM=x,则,整理得:x2-bx+a2=0,
∵b>2a,a>0,b>0,∴△=b2-4a2>0,
∴方程有两个不相等的实数根,且两根均大于零,符合题意,
∴当b>2a时,存在∠BMC=90°.
(3)解:不成立.理由:
若∠BMC=90°,由(2)可知x2-bx+a2=0,∵b<2a,a>0,b>0,
∴△=b2-4a2<0,∴方程没有实数根,
∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.
25. 解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,
∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,
∴OC=OB=×4=2,BC=OB•sin60°=4×=2,
∴点B的坐标为(-2,-2).
(2)∵抛物线过原点O和点A、B,
∴可设抛物线解析式为y=ax2+bx,
将A(4,0),B(-2,-2)代入,得解得
∴此抛物线的解析式为y=-x2+x.
(3)存在,
如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),
①若OB=OP,则22+|y|2=42,解得y=±2.
当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD== ,∴∠POD=60°,
∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,
∴y=2不符合题意,舍去.
∴点P的坐标为(2,-2);
②若OB=PB,则42+|y+2|2=42,解得y=-2,故点P的坐标为(2,-2);
③若OP=BP,则22+|y|2=42+|y+2|2,解得y=-2,故点P的坐标为(2,-2).
综上所述,符合条件的点P只有一个,其坐标为(2,-2).
2013年临沂市中考数学试卷
一、选择题(共14小题,每小题3分,共42分)
1.的绝对值是
(A).(B). (C). (D).[来源:Zxxk.Com]
2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为
(A). (B). (C). (D) .
3.如图,已知AB∥CD,∠2=135°,则∠1的度数是
(A) 35°. (B) 45°. (C) 55°. (D) 65°.
4.下列运算正确的是
(A). (B). (C). (D).[来源:学科网]
5.计算的结果是
(A). (B). (C). (D).
7.如图是一个几何体的三视图,则这个几何体的侧面积是
(A) (B) (C) (D)
8.不等式组的解集是
(A). (B). (C). (D)
9.在一次歌咏比赛中,某选手的得分情况如下:92, 88, 95, 93, 96, 95, 94.这组数据的众数和中位数分别是
(A) 94,94 . (B) 95,95. (C) 94,95. (D) 95,94.
10.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是
(A) AB=AD. (B) AC平分∠BCD. (C) AB=BD. (D) △BEC≌△DEC.
11.如图,在平面直角坐标系中,点A1 , A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1A2B1B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是
(A) . (B) . (C) . (D) .
12.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是
(A)75°. (B)60°. (C)45°. (D)30°.
13.如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图像经过OB边的中点C,则点B的坐标是
(A)( 1, ). (B)(, 1 ). (C)( 2 ,). (D)( ,2 ).
14、如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(),则s()与t(s)的函数关系可用图像表示为
A. B. C. D.
二、填空题(本大题共5小题,每小题3分,共15分)
15.分解因式 .
16.分式方程的解是 .
17.如图,菱形ABCD中,AB=4,,,垂足分别为E,F,连接EF,则的△AEF的面积是 .
18.如图,等腰梯形ABCD中,垂足分别为E,D,DE=3,BD=5,则腰长AB=
19. 对于实数a,b,定义运算“﹡”:a﹡b=例如4﹡2,因为4>2,所以4﹡2.若是一元二次方程的两个根,则﹡=
三、开动脑筋,你一定能做对!(本大题共3小题,共21分)
20.(7分)2013年1月1日新交通法规开始实施。为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:
选项
人数
A
B
C
D
4
12
56
图1
(1)本次调查共选取 名居民;
(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;
(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?x k b 1 . c o m
21.(7分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.
(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?
(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?
22.(7分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
四、认真思考,你一定能成功!(本大题共2小题,共18分)
23. (9分) 如图,在△ABC中,∠ACB=, E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.
(1)求证:∠A=2∠DCB;
(2)求图中阴影部分的面积(结果保留和根号).[来源:学+科+网Z+X+X+K]
24.(9分)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
x(单位:台)
10
20
30
y(单位:万元∕台)
60
55
50
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价成本)
a
z
55
75
15
35
(第24题图)
五、相信自己,加油呀!(本大题共2小题,共24分)
25.(11分)如图,矩形中,∠ACB =,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.
(1)当PE⊥AB,PF⊥BC时,如图1,则的值为 .
(2)现将三角板绕点P逆时针旋转()角,如图2,求的值;
(3)在(2)的基础上继续旋转,当,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.
26、(13分)如图,抛物线经过三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
x
y
A
O
C
B
(第26题图)
2013年临沂市中考数学试卷
一、1. A2. D3. B4. C5. B6. A7. C8. D9. D10. C11. D12.B13C14、B
二、15. 16.17. 18. 19.
三、20. 解:(1)80 ………………………………(2分)
(2)(人) ……………(3分)
选项
人数
A
B
C
D
4
8
12
56
.
所以“C”所对圆心角的度数是 ………(4分)
图形补充正确 ………………………………(5分)
(3)(人).
所以该社区约有1120人从不闯红灯.…………………………………(7分)
21.
解:(1)设购买A型学习用品x件,则B型学习用品为. ……(1分)
根据题意,得………………(2分)
解方程,得x=400.
则.
答:购买A型学习用品400件,购买B型学习用品600件. ………………………(4分)
(2)设最多购买B型学习用品x件,则购买A型学习用品为件.
根据题意,得……………………(6分)
解不等式,得.
答:最多购买B型学习用品800件. ……………………(7分)
22.证明:(1)∵E是AD的中点,∴AE=ED.……………………………(1分)
∵AF∥BC,∴∠AFE=∠DBE, ∠FAE=∠BDE,
∴△AFE≌△DBE. ………………………(2分)
∴AF=DB.
∵AD是BC边上的中点,∴DB=DC,AF=DC ……………(3分)
(2)四边形ADCF是菱形. …………………………………(4分)
理由:由(1)知,AF=DC,
∵AF∥CD, ∴四边形ADCF是平行四边形. ……(5分)
又∵AB⊥AC, ∴△ABC是直角三角形
∵AD是BC边上的中线, ∴. … (6分)
∴平行四边形ADCF是菱形. …………………(7分)
23. (1)证明:连接OD.
∵AB与⊙O相切于点D , ∴,∴.
∵,∴,∴
∵OC=OD, ∴.∴
(2)方法一:在Rt△ODB中,OD=OE,OE=BE
∴
∴ ……6分1.c Om
∵
∴
方法二:连接DE,在Rt△ODB中,∵BE=OE=2
∴,
∵OD=OE, ∴△DOE为等边三角形,即
24.解:(1)设y与x的函数解析式为
根据题意,得解得
∴y与x之间的函数关系式为;…(3分)
(2)设该机器的生产数量为x台,
根据题意,得,解得
∵∴x=50.
答:该机器的生产数量为50台. ……………………………(6分)
(3)设销售数量z与售价a之间的函数关系式为
根据题意,得 解得
∴ ……………………(8分)
当z=25时,a=65.
设该厂第一个月销售这种机器的利润为w万元.
(万元). …………………(9分)
25. 解:(1) …………………………(2分)
(2)过点P作PH⊥AB,PG⊥BC,垂足分别为H,G.…………………(3分)
∵在矩形ABCD中,,∴PH∥BC.
又∵,∴
∴,
………………(5分)
由题意可知,
∴Rt△PHE∽Rt△PGF.
∴ …………(7分)
又∵点P在矩形ABCD对角线交点上,∴AP=PC.
∴ ………………(8分)
(3)变化 ……………………………………………………(9分)
证明:过点P作PH⊥AB,PG⊥BC,垂足分别为H,G.
根据(2),同理可证 ………(10分)
又∵ ∴ ………………………(11分)
26、解:(1)设抛物线的解析式为 ,
x
y
A
O
C
B
(第26题图)
P
N
M
H
根据题意,得,
解得
∴抛物线的解析式为: ………(3分)
(2)由题意知,点A关于抛物线对称轴的对称点为点B,连接BC交抛物线的对称轴于点P,则P点 即为所求.
设直线BC的解析式为,
由题意,得解得
∴直线BC的解析式为 …………(6分)
∵抛物线的对称轴是,
∴当时,
∴点P的坐标是. …………(7分)
(3)存在 …………………………(8分)
(i)当存在的点N在x轴的下方时,如图所示,∵四边形ACNM是平行四边形,∴CN∥x轴,∴点C与点N关于对称轴x=2对称,∵C点的坐标为,∴点N的坐标为 ………………………(11分)
(II)当存在的点在x轴上方时,如图所示,作轴于点H,∵四边形是平行四边形,∴,
∴Rt△CAO ≌Rt△,∴.
∵点C的坐标为,即N点的纵坐标为,
∴即
解得
∴点的坐标为和.
综上所述,满足题目条件的点N共有三个,
分别为,, ………………………(13分)
2014年临沂市中考数学试卷
一、选择题(本大题共14小题,每小题3分,共42分)
1.﹣3的相反数是( )
A. 3 B.﹣3 C. D.﹣
2.根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为( )
A. 4.16×1012美元 B.4.16×1013美元 C. 0.416×1012美元 D. 416×1010美元
3.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )
A.
40°
B.
60°
C.
80°
D.
100°
4.下列计算正确的是( )
A.
a+2a=3a2
B.
(a2b)3=a6b3
C.
(am)2=am+2
D.
a3•a2=a6
5.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是( )
A.
B.
C.
D.
6.当a=2时,÷(﹣1)的结果是( )
A.
B.
﹣
C.
D.
﹣
7.将一个n边形变成n+1边形,内角和将( )
A.
减少180°
B.
增加90°
C.
增加180°
D.
增加360°
8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是( )
A.
=
B.
=
C.
=
D.
=
9.如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为( )
A.
25°
B.
50°
C.
60°
D.
80°
10.从1、2、3、4中任取两个不同的数,其乘积大于4的概率是( )
A.
B.
C.
D.
11.一个几何体的三视图如图所示,这个几何体的侧面积为( )
A.
2πcm2
B.
4πcm2
C.
8πcm2
D.
16πcm2
12.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是( )
A.
1﹣xn+1
B.
1+xn+1
C.
1﹣xn
D.
1+xn
13.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为( )
A.
20海里
B.
10海里
C.
20海里
D.
30海里
14.在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为C1,C1关于原点对称的图象为C2,则直线y=a(a为常数)与C1、C2的交点共有( )
A.
1个
B.
1个或2个
C.
1个或2个或3个
D.
1个或2个或3个或4个
二、填空题(本大题共5小题,每小题3分,共15分)
15.在实数范围内分解因式:x3﹣6x= .
16.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:
时间(小时)
4
5
6
7
人数
10
20
15
5
则这50名学生一周的平均课外阅读时间是 小时.
17.如图,在▱ABCD中,BC=10,sinB=,AC=BC,则▱ABCD的面积是 .
18.如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为
19.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={﹣2,0,1,5,7},B={﹣3,0,1,3,5},则A+B= .
三、解答题(本大题共7小题,共63分)
20.(7分)计算:﹣sin60°+×.
21.(7分)随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只选一项):
A:加强交通法规学习;
B:实行牌照管理;
C:加大交通违法处罚力度;
D:纳入机动车管理;
E:分时间分路段限行
调查数据的部分统计结果如下表:
管理措施
回答人数
百分比
A
25
5%
B
100
m
C
75
15%
D
n
35%
E
125
25%
合计
a
100%
(1)根据上述统计表中的数据可得m= ,n= ,a= ;
(2)在答题卡中,补全条形统计图;
(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D:纳入机动车管理”的居民约有多少人?
22.(7分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接OE,若BC=4,求△OEC的面积.
23.(9分)对一张矩形纸片ABCD进行折叠,具体操作如下:
第一步:先对折,使AD与BC重合,得到折痕MN,展开;
第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;
第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.
(1)证明:∠ABE=30°;
(2)证明:四边形BFB′E为菱形.
24.(9分)某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:
(1)乙出发后多长时间与甲相遇?
(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)
25.(11分)【问题情境】
如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
【探究展示】
(1)证明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
【拓展延伸】
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.xKb 1.C om
26.(13分)如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.
(1)求抛物线的解析式;
(2)求点A到直线CD的距离;
(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G、P、Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.
2014年临沂市中考数学试卷答案
一、选择题(每小题3分,共42分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
答案
A
A
D
B
B
D
C
D
B
C
B
A
C
C
二、填空题(每小题3分,共15分)
15.; 16.5.3; 17.;
18.; 19.{-3,-2,0,1,3,5,7}.(注:各元素的排列顺序可以不同)
20.解:原式=
= (6分)
==. (7分)
(注:本题有3项化简,每项化简正确得2分)
21.(1)20%,175, 500. (3分)
管理措施
人数
200
175
150
125
100
75
50
25
(2)
A B C D E
……………(2分)
(注:画对一个得1分,共2分)
(3)∵2600×35%=910(人),
∴选择D选项的居民约有910人. (2分)
A
22.(1)(本小问3分)
证明:连接OD.
D
∵OB=OD,
E
∴∠OBD=∠ODB.
C
又∵∠A=∠B=30°,
F
G
O
B
∴∠A=∠ODB,
∴DO∥AC. (2分)
∵DE⊥AC,∴OD⊥DE.
∴DE为⊙O的切线. (3分)
(2)(本小问4分)
连接DC.
∵∠OBD=∠ODB=30°,∴∠DOC=60°.∴△ODC为等边三角形.∴∠ODC=60°,∴∠CDE=30°.
又∵BC=4,∴DC=2,
∴CE=1. (2分)
方法一:
过点E作EF⊥BC,交BC的延长线于点F.
∵∠ECF=∠A+∠B=60°,
∴EF=CE·sin60°=1×=. (3分)
∴S△OEC (4分)
方法二:
过点O作OG⊥AC,交AC的延长线于点G.
∵∠OCG=∠A+∠B=60°,
∴OG=OC·sin60°=2×=. (3分)
∴S△OEC (4分)
方法三:
∵OD∥CE,∴S△OEC = S△DEC.
又∵DE=DC·cos30°=2×=, (3分)
∴S△OEC (4分)
C
N
B
A'
图1
E
D
A
M
23.证明:(1)(本小问5分)
由题意知,M是AB的中点,
△ABE与△A'BE关于BE所在的直线对称.
∴AB=A'B,∠ABE=∠A'BE. (2分)
在Rt△A'MB中,
A'B,
∴∠BA'M=30°, (4分)
∴∠A'BM=60°,
∴∠ABE=30°. (5分)
图2
A
B
D
C
N
A'
F
M
E
B'
(2)(本小问4分)
∵∠ABE=30°,
∴∠EBF=60°,
∠BEF=∠AEB=60°,
∴△BEF为等边三角形. (2分)
由题意知,
△BEF与△B'EF关于EF所在的直线对称.
∴BE=B'E=B'F=BF,
∴四边形BFE为菱形. (4分)
24.解:(1)(本小问5分)
当0≤t≤90时,设甲步行路程与时间的函数解析式为S=at.
∵点(90,5400)在S=at的图象上,∴a=60.
∴函数解析式为S=60t. (1分)
当20≤t≤30时,设乙乘观光车由景点A到B时的路程与时间的函数解析式为S=mt+n.
∵点(20,0),(30,3000)在S=mt+n的图象上,
∴ 解得 (2分)
∴函数解析式为S=300t-6000(20≤t≤30). (3分)
根据题意,得
解得 (4分)
∴乙出发5分钟后与甲相遇. (5分)
(2)(本小问4分)
设当60≤t≤90时,乙步行由景点B到C的速度为米/分钟,
根据题意,得5400-3000-(90-60)≤400, (2分)
解不等式,得≥ . (3分)
∴乙步行由B到C的速度至少为66.7米/分钟. (4分)
A
B
M
D
E
F
N
25. 证明:
(1)(本小问4分)
方法一:过点E作EF⊥AM,垂足为F.
∵AE平分∠DAM,ED⊥AD,
∴ED=EF. (1分)
由勾股定理可得,
AD=AF. (2分)
G
C
又∵E是CD边的中点,
∴EC=ED=EF.
又∵EM=EM,∴Rt△EFM≌Rt△ECM.
∴MC=MF. (3分)
∵AM=AF+FM,∴AM=AD+MC. (4分)
方法二:
连接FC. 由方法一知,∠EFM=90°, AD=AF,EC=EF. (2分)
则∠EFC=∠ECF,
∴∠MFC=∠MCF.
∴MF=MC. (3分)
∵AM=AF+FM,∴AM=AD+MC. (4分)
方法三:
延长AE,BC交于点G.
∵∠AED=∠GEC,∠ADE=∠GCE=90°,DE=EC,
∴△ADE≌△GCE.
∴AD=GC, ∠DAE=∠G. (2分)
又∵AE平分∠DAM,
∴∠DAE=∠MAE,∴∠G=∠MAE,
∴AM=GM, (3分)
∵GM=GC+MC=AD+MC,
∴AM=AD+MC. (4分)
方法四:
连接ME并延长交AD的延长线于点N,
∵∠MEC=∠NED,
EC=ED,
∠MCE=∠NDE=90°,
∴△MCE≌△NDE.
∴MC=ND,∠CME=∠DNE. (2分)
由方法一知△EFM≌△ECM,
∴∠FME=∠CME,
∴∠AMN=∠ANM. (3分)
∴AM=AN=AD+DN=AD+MC. (4分)
A
B
M
D
E
(2)(本小问5分)
C
F
成立. (1分)
方法一:延长CB使BF=DE,
连接AF,
∵AB=AD,∠ABF=∠ADE=90°,
∴△ABF≌△ADE,
∴∠FAB=∠EAD,∠F=∠AED. (2分)
∵AE平分∠DAM,
∴∠DAE=∠MAE.
∴∠FAB=∠MAE,
∴∠FAM=∠FAB+∠BAM=∠BAM+∠MAE=∠BAE. (3分)
∵AB∥DC,∴∠BAE=∠DEA,∴∠F=∠FAM,
∴AM=FM. (4分)
又∵FM=BM+BF=BM+DE,
∴AM=BM+DE. (5分)
方法二:
设MC=x,AD=a.
由(1)知 AM=AD+MC=a+x.
在Rt△ABM中,
∵,
∴, (3分)
∴. (4分)
∴,,∵BM+DE=,
∴. (5分)
(3)(本小问2分)
AM=AD+MC成立, (1分)
AM=DE+BM不成立. (2分)
26.(1)(本小问3分)
解:在中,令,得.
A
B
C
D
O
F
E
M
∴C(0,-1) (1分)
∵抛物线与x轴交于A(-1,0), B(1,0),
∴C为抛物线的顶点.
设抛物线的解析式为,
将A(-1,0)代入,得 0=a-1.
∴a=1.
∴抛物线的解析式为. (3分)
(2)(本小问5分)
方法一:
图1
设直线与x轴交于E,
则,0). (1分)
∴,
. (2分)
连接AC,过A作AF⊥CD,垂足为F,
S△CAE , (4分)
即,
∴. (5分)
方法二:由方法一知,
∠AFE=90°,,. (2分)
在△COE与△AFE中,
∠COE=∠AFE=90°,
∠CEO=∠AEF,
∴△COE∽△AFE .
∴, (4分)
即.
∴. (5分)
(3)(本小问5分)
由,得,.
∴D(2,3). (1分)
如图1,过D作y轴的垂线,垂足为M,
由勾股定理,得
. (2分)
在抛物线的平移过程中,PQ=CD.
(i)当PQ为斜边时,设PQ中点为N,G(0,b),
则GN=.
∵∠GNC=∠EOC=90°,∠GCN=∠ECO,
Q
∴△GNC ∽△EOC.
G
∴,
N
∴,
∴b=4.
P
∴G(0,4) . (3分)
(ii)当P为直角顶点时,
O
E
设G(0,b),
C
图2
则,
同(i)可得b=9,
则G(0,9) . (4分)
(iii)当Q为直角顶点时,
同(ii)可得G(0,9) .
综上所述,符合条件的点G有两个,分别是(0,4),(0,9). (5分)
E
C
D
O
G
Q
P
图3
E
G
Q
P
O
C
图4
2015年临沂市中考数学试卷
一、选择题(本大题共14小题,每小题3分,共42分)
1.的绝对值是
A
D
E
C
B
(第12题图)
(A) . (B) . (C) 2. (D) 2.
2.如图,直线a∥b,∠1 = 60°,∠2 = 40°,则∠3等于
O
A
B
C
(第8题图)
(A) 40°. (B) 60°. (C) 80°. a
b
1
3
2
(第2题图)
(D) 100°.
3.下列计算正确的是
(A) (B) . (C) . (D) .
4.某市6月份某周内每天的最高气温数据如下(单位:℃):24 26 29 26 29 32 29
则这组数据的众数和中位数分别是
(A) 29,29. (B) 26,26. (C) 26,29. (D) 29,32.
5.如图所示,该几何体的主视图是
(第5题图)
(A) (B) (C) (D)
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
6.不等式组的解集,在数轴上表示正确的是
(A) (B) (C) (D)
7.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起. 则其颜色搭配一致的概率是
(A) . (B) . (C) . (D) 1.
8.如图A,B,C是上的三个点,若,则等于
(A) 50°. (B) 80°. (C) 100°. (D) 130°.
9.多项式与多项式的公因式是
(A) . (B) . (C) . (D) .
10.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是
(A) . (B) . (C) . (D) .
11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….
按照上述规律,第2015个单项式是
(A) 2015x2015. (B) 4029x2014. (C) 4029x2015. (D) 4031x2015.
12.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB、EC、DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
(A) AB=BE. (B) BE⊥DC. (C) ∠ADB=90°. (D) CE⊥DE.
13.要将抛物线平移后得到抛物线,下列平移方法正确的是
(A) 向左平移1个单位,再向上平移2个单位. (B) 向左平移1个单位,再向下平移2个单位.
(C) 向右平移1个单位,再向上平移2个单位. (D) 向右平移1个单位,再向下平移2个单位.
(第14题图)
x
y
O
2
2
14.在平面直角坐标系中,直线y =-x+2与反比例函数的图象有唯一公共点. 若直线与反比例函数的图象有2个公共点,则b的取值范围是
(A) b﹥2. (B) -2﹤b﹤2.
(C) b﹥2或b﹤-2. (D) b﹤-2.
二、填空题(本大题共5小题,每小题3分,共15分)
15.比较大小:2_______(填“﹤”,“=”,“﹥”).
16.计算:____________.
17.如图,在ABCD中,连接BD,, , ,则ABCD的面积是________.
B
C
D
A
O
B
C
D
E
A
(第17题图) (第18题图)
18.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则_________.
19.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),
当x1﹤x2时,都有y1﹤y2,称该函数为增函数. 根据以上定义,可以判断下面所给的函数中,是增函数的有______________(填上所有正确答案的序号).
① y = 2x; ② y =x+1; ③ y = x2 (x>0); ④ .
三、解答题(本大题共7小题,共63分)
20.(7分)计算:.
21.(7分)“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数;
(3)计算随机选取这一年内的某一天,空气质量是“优”的概率.
某市若干天空气质量情况扇形统计图
轻微污染
轻度污染
中度污染
重度污染
良
优
5%
某市若干天空气质量情况条形统计图
36
30
24
18
12
6
0
优 良
天数
空气质
量类别
重度
污染
轻微
污染
轻度
污染
中度
污染
12
36
3
2
1
(第21题图)
22.(7分)C
A
B
D
α
β
(第22题图)
小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?
23.(9分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留).
B
C
E
A
O
D
(第23题图)
24.(9分)新农村社区改造中,有一部分楼盘要对外销售. 某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.
若购买者一次性付清所有房款,开发商有两种优惠方案:
方案一:降价8%,另外每套楼房赠送a元装修基金;
方案二:降价10%,没有其他赠送.
(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;
(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.
25.(11分)如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.
(1)请判断:AF与BE的数量关系是 ,位置关系是 ;
(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
A
B
A
B
A
B
E
E
D
C
D
C
D
C
F
F
图1
图2
备用图
(第25题图)
26.(13分)在平面直角坐标系中,O为原点,直线y =-2x-1与y轴交于点A,与直线y =-x交于点B, 点B关于原点的对称点为点C.
(1)求过A,B,C三点的抛物线的解析式;
(2)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(-1<t<1),当t为何值时,四边
(第26题图)
O
x
y
A
C
B
形PBQC面积最大,并说明理由.
2015年参考答案及评分标准
说明:解答题给出了部分解答方法,考生若有其它解法,应参照本评分标准给分.
一、选择题(每小题3分,共42分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
答案
A
C
B
A
D
C
B
D
A
B
C
B
D
C
二、填空题(每小题3分,共15分)
15.>; 16.; 17.; 18.2; 19.①③.
三、解答题
20.解:方法一:
= [][] 1分
= 3分
5分
6分
. 7分
方法二:
3分
5分
. 7分
某市若干天空气质量情况条形统计图
36
30
24
18
12
6
0
优 良
天数
空气质
量类别
重度
污染
轻微
污染
轻度
污染
中度
污染
12
36
3
2
1
6
21.解:(1)图形补充正确. 2分
(2)方法一:由(1)知样本容量是60,
∴该市2014年(365天)空气质量达到“优”、“良”的总天数约为:
(天). 5分
方法二:由(1)知样本容量是60,
∴该市2014年(365天)空气质量达到“优”的天数约为:
(天). 3分
该市2014年(365天)空气质量达到“良”的天数约为:
(天). 4分
∴该市2014年(365天)空气质量达到“优”、“良”的总天数约为:
73+219=292(天). 5分
(3)随机选取2014年内某一天,空气质量是“优”的概率为:
C
A
B
D
α
β
7分
22.解:如图,α = 30°,β = 60°,AD = 42.
∵,,
∴BD = AD·tanα = 42×tan30°
= 42×= 14. 3分
CD=AD tanβ=42×tan60°
=42. 6分
∴BC=BD+CD=14+42
=56(m).
B
C
E
A
O
D
因此,这栋楼高为56m. 7分
23.(1)证明:连接OD.
∵BC是⊙O的切线,D为切点,
∴OD⊥BC. 1分
又∵AC⊥BC,
∴OD∥AC, 2分
∴∠ADO=∠CAD. 3分
又∵OD=OA,
∴∠ADO=∠OAD, 4分
∴∠CAD=∠OAD,即AD平分∠BAC. 5分
B
C
E
A
O
D
(2)方法一:连接OE,ED.
∵∠BAC=60°,OE=OA,
∴△OAE为等边三角形,
∴∠AOE=60°,
∴∠ADE=30°.
又∵,
∴∠ADE=∠OAD,
∴ED∥AO, 6分
∴S△AED=S△OED,
∴阴影部分的面积 = S扇形ODE = . 9分
方法二:同方法一,得ED∥AO, 6分
∴四边形AODE为平行四边形,
∴ 7分
又S扇形ODE-S△OED= 8分
∴阴影部分的面积 = (S扇形ODE-S△OED) + S△AED =. 9分
24.解:(1)当1≤x≤8时,y=4000-30(8-x)
=4000-240+30 x
=30 x+3760; 2分
当8<x≤23时,y=4000+50(x-8)
=4000+50 x-400
=50 x+3600.
(1≤x≤8,x为整数),
(8<x≤23,x为整数).
∴所求函数关系式为 4分
(2)当x=16时,
方案一每套楼房总费用:
w1=120(50×16+3600)×92%-a=485760-a; 5分
方案二每套楼房总费用:
w2=120(50×16+3600)×90%=475200. 6分
∴当w1<w2时,即485760-a<475200时,a>10560;
当w1=w2时,即485760-a=475200时,a=10560;
当w1>w2时,即485760-a>475200时,a<10560.
因此,当每套赠送装修基金多于10560元时,选择方案一合算;
当每套赠送装修基金等于10560元时,两种方案一样;
当每套赠送装修基金少于10560元时,选择方案二合算. 9分
25.解:(1)AF=BE,AF⊥BE. 2分
(2)结论成立. 3分
B
A
E
C
D
F
证明:∵四边形ABCD是正方形,
∴BA=AD =DC,∠BAD =∠ADC = 90°.
在△EAD和△FDC中,
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF. 4分
在△BAE和△ADF中,
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF. 6分
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE. 9分
(3)结论都能成立. 11分
26.解:(1)解方程组得
∴点B的坐标为(-1,1). 1分
∵点C和点B关于原点对称,
∴点C的坐标为(1,-1). 2分
又∵点A是直线y=-2x-1与y轴的交点,
∴点A的坐标为(0,-1). 3分
设抛物线的解析式为y=ax2+bx+c,
∴解得
∴抛物线的解析式为y=x2-x-1. 5分
(2)①如图1,∵点P在抛物线上,
∴可设点P的坐标为(m,m2-m-1).
当四边形PBQC是菱形时,O为菱形的中心,
∴PQ⊥BC,即点P,Q在直线y = x上,
∴m = m2-m-1, 7分
解得m = 1±. 8分
∴点P的坐标为(1+,1+)或(1-,1-). 9分
O
x
y
P
A
C
B
Q
F
D
E
O
x
y
P
A
C
B
Q
图1 图2
②方法一:
如图2,设点P的坐标为(t,t2 - t - 1).
过点P作PD∥y轴,交直线y = - x于点D,则D(t,- t).
分别过点B,C作BE⊥PD,CF⊥PD,垂足分别为点E,F.
∴PD = - t -( t2 - t -1) = - t2 + 1,BE + CF = 2, 10分
∴S△PBC=PD·BE +PD·CF
=PD·(BE + CF)
=(- t2 + 1)×2
=- t2 + 1. 12分
∴=-2t2+2.
∴当t=0时,有最大值2. 13分
方法二:
如图3,过点B作y轴的平行线,过点C作x轴的平行线,两直线交于点D,连接PD.
∴S△PBC=S△BDC-S△PBD-S△PDC
=×2×2-×2(t+1)-×2(t2-t-1+1)
=-t2+1. 12分
∴=-2t2+2.
∴当t=0时,有最大值2. 13分
O
x
y
P
A
C
B
Q
E
F
O
x
y
P
A
C
B
Q
D
图3 图4
方法三:如图4,过点P作PE⊥BC,垂足为E,作PF∥x轴交BC于点F.
∴PE=EF.
∵点P的坐标为(t,t2-t-1),
∴点F的坐标为(-t2+t+1,t2-t-1).
∴PF=-t2+t+1-t=-t2+1.
∴PE=(-t2+1). 11分
∴S△PBC=BC·PE=××(-t2+1)
=-t2+1. 12分
∴=-2t2+2.
∴当t=0时,有最大值2.
2016年山东省临沂市中考数学试卷
一、(共14小题,每小题3分,满分42分)
1.四个数﹣3,0,1,2,其中负数是( )
A.﹣3 B.0 C.1 D.2
2.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )
A.80° B.85° C.90° D.95°
3.下列计算正确的是( )
A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x5
4.不等式组的解集,在数轴上表示正确的是( )
A. B.
C. D.
5.如图,一个空心圆柱体,其主视图正确的是( )
A. B. C. D.
6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )
A. B. C. D.
7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )
A.108° B.90° C.72° D.60°
8.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是( )
A. B. C. D.
9.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是( )
A.4 B.3 C.2 D.1
10.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是( )
A. B. C.﹣ D.﹣
11.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )
A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2
12.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( )
A.0 B.1 C.2 D.3
13.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
0
…
y
…
4
0
﹣2
﹣2
0
4
…
下列说法正确的是( )
A.抛物线的开口向下 B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2 D.抛物线的对称轴是x=﹣
14.如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有( )
A.0个 B.1个 C.2个 D.0个,或1个,或2个
二、填空题(共5小题,每小题3分,满分15分)
15.分解因式:x3﹣2x2+x= .
16.化简= .
17.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为 .
18.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为 .
19.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是 .
三、解答题(共7小题,满分63分)
20.计算:|﹣3|+tan30°﹣﹣(2016﹣π)0.
21.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
频数分布表
身高分组
频数
百分比
x<155
5
10%
155≤x<160
a
20%
160≤x<165
15
30%
165≤x<170
14
b
x≥170
6
12%
总计
100%
(1)填空:a= ,b= ;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?
22.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?
23.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2,求PD的长.
24.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
25.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的数量关系是 ,位置关系是 ;
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
26.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
2016年临沂市中考数学试卷参考答案
一、1. A.2. B.3. C.4. A.5. B.6. B.7. C.8. D.9. B.10. C.11. C.12. D.13. D.14. B.
二、15. x(x﹣1)2.16. 1.17. .18. 6.19..
三、20.解:原式=3+×﹣2﹣1=2﹣.
21.解:(1)由表格可得,
调查的总人数为:5÷10%=50,
∴a=50×20%=10,
b=14÷50×100%=28%,
故答案为:10,28%;
(2)补全的频数分布直方图如下图所示,
(3)600×(28%+12%)=600×40%=240(人)
即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.
22.解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,
在Rt△APC中,∵cos∠APC=,
∴PC=20•cos60°=10,
∴AC==10,
在△PBC中,∵∠BPC=45°,
∴△PBC为等腰直角三角形,
∴BC=PC=10,
∴AB=AC﹣BC=10﹣10≈7.3(海里).
答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.
23.(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC是等边三角形.
(2)解:∵△ABC是等边三角形,AB=2,
∴AC=BC=AB=2,∠ACB=60°.
在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,
∴AP=AC•cot∠APC=2.
在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,
∴AD=AC•tan∠ACD=6.
∴PD=AD﹣AP=6﹣2=4.
24.解:(1)由题意知:
当0<x≤1时,y甲=22x;
当1<x时,y甲=22+15(x﹣1)=15x+7.
y乙=16x+3.
(2)①当0<x≤1时,
令y甲<y乙,即22x<16x+3,
解得:0<x<;
令y甲=y乙,即22x=16x+3,
解得:x=;
令y甲>y乙,即22x>16x+3,
解得:<x≤1.
②x>1时,
令y甲<y乙,即15x+7<16x+3,
解得:x>4;
令y甲=y乙,即15x+7=16x+3,
解得:x=4;
令y甲>y乙,即15x+7>16x+3,
解得:0<x<4.
综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.
25.解:(1)FG=CE,FG∥CE;
(2)过点G作GH⊥CB的延长线于点H,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC
∴HE+EB=BC+EB
∴BH=EC
∴FG=EC
(3)∵四边形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF与△DCE中,
,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,
∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四边形CEGF平行四边形,
∴FG∥CE,FG=CE.
26.解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,
∴A(5,0),B(0,10),
∵抛物线过原点,
∴设抛物线解析式为y=ax2+bx,
∵抛物线过点B(0,10),C(8,4),
∴,
∴,
∴抛物线解析式为y=x2﹣x,
∵A(5,0),B(0,10),C(8,4),
∴AB2=52+102=125,BC2=82+(8﹣5)2=100,AC2=42+(8﹣5)2=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形.
(2)如图1,
当P,Q运动t秒,即OP=2t,CQ=10﹣t时,
由(1)得,AC=OA,∠ACQ=∠AOP=90°,
在Rt△AOP和Rt△ACQ中,
,
∴Rt△AOP≌Rt△ACQ,
∴OP=CQ,
∴2t=10﹣t,
∴t=,
∴当运动时间为时,PA=QA;
(3)存在,
∵y=x2﹣x,
∴抛物线的对称轴为x=,
∵A(5,0),B(0,10),
∴AB=5
设点M(,m),
①若BM=BA时,
∴()2+(m﹣10)2=125,
∴m1=,m2=,
∴M1(,),M2(,),
②若AM=AB时,
∴()2+m2=125,
∴m3=,m4=﹣,
∴M3(,),M4(,﹣),
③若MA=MB时,
∴(﹣5)2+m2=()2+(10﹣m)2,
∴m=5,
∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,
∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣),
2017年山东省临沂市中考数学试卷
一、选择题(本大题共14小题,每小题3分,共42分)
1.﹣的相反数是( )
A. B.﹣ C.2017 D.﹣2017
2.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )
A.50° B.60° C.70° D.80°
3.下列计算正确的是( )
A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b4
4.不等式组中,不等式①和②的解集在数轴上表示正确的是( )
AB.C. D.
5.如图所示的几何体是由五个小正方体组成的,它的左视图是( )
A. B. C. D.
6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是( )
A. B. C. D.
7.一个多边形的内角和是外角和的2倍,则这个多边形是( )
A.四边形 B.五边形 C.六边形 D.八边形
8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是( )
A.= B.= C.= D.=
9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:
部门
人数
每人创年利润(万元)
A
1
10
B
3
8
C
7
5
D
4
3
这15名员工每人所创年利润的众数、中位数分别是( )
A.10,5 B.7,8 C.5,6.5 D.5,5
10.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是( )
A.2 B.﹣π C.1 D.+π
第2题图 第10题图 第12题图 第14题图
11.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是( )
A.11 B.12 C.13 D.14
12.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )
A.若AD⊥BC,则四边形AEDF是矩形 B.若AD垂直平分BC,则四边形AEDF是矩形
C.若BD=CD,则四边形AEDF是菱形 D.若AD平分∠BAC,则四边形AEDF是菱形
13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t
0
1
2
3
4
5
6
7
…
h
0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是( )
A.6 B.10 C.2 D.2
二、填空题(本大题共5小题,每小题3分,共15分)
15.分解因式:m3﹣9m= .
16.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= .
17.计算:÷(x﹣)= .
18.在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是 .
19.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).
已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:
③ =(2,1),=(﹣1,2); ②=(cos30°,tan45°),=(1,sin60°);
③=(﹣,﹣2),=(+,); ④=(π0,2),=(2,﹣1).
其中互相垂直的是 (填上所有正确答案的符号).
三、解答题(本大题共7小题,共63分)
20.(7分)计算:|1﹣|+2cos45°﹣+()﹣1.
21.(7分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:
学生最喜爱的节目人数统计表
节目
人数(名)
百分比
最强大脑
5
10%
朗读者
15
b%
中国诗词大会
a
40%
出彩中国人
10
20%
根据以上提供的信息,解答下列问题:
(1)x= ,a= ,b= ;
(2)补全上面的条形统计图;
(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.
22.(7分)如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.
23.(9分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.
24.(9分)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?
25.(11分)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=
∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.
在此基础上,同学们作了进一步的研究:
(1) 小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=
∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2) 小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=
∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.
26.(13分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
2017年临沂市中考数学答案
一、.1. A.2. A.3. D.4. B.5. D.6. C.7. C.8. B.9. D.10. C.11. B.12. D.13. B.14. C.
二、]15. m(m+3)(m﹣3).16. 4.17. .18. 24.19.①③④.
三、20.解:|1﹣|+2cos45°﹣+()﹣1
=﹣1+2×﹣2+2
=﹣1+﹣2+2
=1.
21.解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;
故答案为:50;20;30;[来&源:中国^%教@育出版~网]
(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:
(3)根据题意得:1000×40%=400(名),
则估计该校最喜爱《中国诗词大会》节目的学生有400名.
22.解:延长CD,交AE于点E,可得DE⊥AE,
在Rt△AED中,AE=BC=30m,∠EAD=30°,
∴ED=AEtan30°=10m,
在Rt△ABC中,∠BAC=30°,BC=30m,
∴AB=30m,
则CD=EC﹣ED=AB﹣ED=30﹣10=20m.
23. (1)证明:∵BE平分∠BAC,AD平分∠ABC,
∴∠ABE=∠CBE,∠BAE=∠CAD,
∴,
∴∠DBC=∠CAD,
∴∠DBC=∠BAE,
∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,
∴∠DBE=∠DEB,
∴DE=DB;
(2)解:连接CD,如图所示:
由(1)得:,
∴CD=BD=4,
∵∠BAC=90°,
∴BC是直径,
∴∠BDC=90°,
∴BC==4,
∴△ABC外接圆的半径=×4=2.
24.解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,
15k=27,得k=1.8,
即当0≤x≤15时,y与x的函数关系式为y=1.8x,
当x>15时,设y与x的函数关系式为y=ax+b,
,得,
即当x>15时,y与x的函数关系式为y=2.4x﹣9,
由上可得,y与x的函数关系式为y=;
(2)设二月份的用水量是xm3,
当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,
解得,x无解,
当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,
解得,x=12,
∴40﹣x=28,
答:该用户二、三月份的用水量各是12m3、28m3.
25.解:(1)BC+CD=AC;
理由:如图1,
延长CD至E,使DE=BC,
∵∠ABD=∠ADB=45°,
∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,
∵∠ACB=∠ACD=45°,
∴∠ACB+∠ACD=45°,
∴∠BAD+∠BCD=180°,
∴∠ABC+∠ADC=180°,
∵∠ADC+∠ADE=180°,
∴∠ABC=∠ADE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS),
∴∠ACB=∠AED=45°,AC=AE,
∴△ACE是等腰直角三角形,∴CE=AC,
∵CE=CE+DE=CD+BC,∴BC+CD=AC;
(2)BC+CD=2AC•cosα.理由:如图2,
延长CD至E,使DE=BC,
∵∠ABD=∠ADB=α,
∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,
∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,
∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,
过点A作AF⊥CE于F,
∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,
∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.
26.解:(1)由y=ax2+bx﹣3得C(0.﹣3),
∴OC=3,
∵OC=3OB,
∴OB=1,
∴B(﹣1,0),
把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,
∴,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)设连接AC,作BF⊥AC交AC的延长线于F,
∵A(2,﹣3),C(0,﹣3),
∴AF∥x轴,
∴F(﹣1,﹣3),
∴BF=3,AF=3,
∴∠BAC=45°,
设D(0,m),则OD=|m|,
∵∠BDO=∠BAC,
∴∠BDO=45°,
∴OD=OB=1,
∴|m|=1,
∴m=±1,
∴D1(0,1),D2(0,﹣1);
(3)设M(a,a2﹣2a﹣3),N(1,n),
①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,
则△ABF≌△NME,
∴NE=AF=3,ME=BF=3,
∴|a﹣1|=3,
∴a=3或a=﹣2,
∴M(4,5)或(﹣2,11);
②以AB为对角线,BN=AM,BN∥AM,如图3,
则N在x轴上,M与C重合,
∴M(0,﹣3),
综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).
山东省临沂市2018年中考数学试卷
一、选择题(本大题共14小题,每小题3分,共42分)
1.在实数﹣3,﹣1,0,1中,最小的数是( )[ww^w.#&zzstep*.@com]
A.﹣3 B.﹣1 C.0 D.1
2.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
3.如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是( )
A.42° B.64° C.74° D.106°
[来 *源: %@中~教^网]
4.一元二次方程y2﹣y﹣=0配方后可化为( )
A.(y+)2=1 B.(y﹣)2=1 C.(y+)2= D.(y﹣)2=
5.不等式组的正整数解的个数是( )
A.5 B.4 C.3 D.2
6.如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是( )
A.9.3m B.10.5m C.12.4m D.14m
7.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是( )[中~国&^教育出#*版网]
A.12cm2 B.(12+π)cm2 C.6πcm2 D.8πcm2
8.2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )
A. B. C. D.
9.如表是某公司员工月收入的资料.
月收入/元
45000
18000
10000
5500
5000
3400
3300
1000
人数
1
1
1
3
6
1
11
1
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数 B.平均数和中位数 C.中位数和众数 D.平均数和方差
10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )
A. = B. =
C. = D. =
11.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )
A. B.2 C.2 D.
12.如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是( )[来%#源*:中^&教网]
A.x<﹣1或x>1 B.﹣1<x<0或x>1 C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l[来13.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:
①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;
③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.[来源:zzst%ep^.c@om~*]其中正确的个数是( )
A.1 B.2 C.3 D.4[www.zz&^s#tep.c*o~m]
14.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )
A.原数与对应新数的差不可能等于零 B.原数与对应新数的差,随着原数的增大而增大
C.当原数与对应新数的差等于21时,原数等于30[w#D.当原数取50时,原数与对应新数的差最大二、填空题(本大题共5小题,每小题3分,共1 5分)
15.计算:|1﹣|= .
16.已知m+n=mn,则(m﹣1)(n﹣1)= .
17.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD= .
18.如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是 cm.[来源%*:中教^网]
19.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0. =x,由0. =0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0. =.将0.写成分数的形式是 .
三、解答题(本大题共7小题,共6 3分)
20.计算:(﹣).
21.某地某月1~20日中午12时的气温(单位:℃)如下:
22 31 25 15 18 23 21 20 27 17
20 12 18 21 21 16 20 24 26 19[来源:中%@国#教育出~版网&]
(1)将下列频数分布表补充完整:
气温分组
划记
频数
12≤x<17
3
17≤x<22
10
22≤x<27
5
27≤x<32
2
(2)补全频数分布直方图;
(3)根据频数分布表或频数分布直方图,分析数据的分布情况.
22.如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?
23.如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
24.甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.
根据图中信息,求:
(1)点Q的坐标,并说明它的实际意义;
(2)甲、乙两人的速度.
25.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时.求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
26.(12018年山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
山东省临沂市2018年中考数学试卷答案
一、1. A.[来源^&:*@中教网%]2. B.3. C.[中国^&教育*出%#版网]4. B.5. C.6. B.[来源*:%zzstep.&com^@]7. C.8. D.[ww@w#.zzstep~.^com*]9. C.10. A.11. B.12. D.13. A.[来源:中~^&国@教育出版网#]14. D.
二、15. ﹣1.16. 1.17. 4.[中国*^教育#出&@版网]18. .19. .
三、20.解:原式=[﹣]•[来@源^:#&中教网%]
=•[www%.zzs@t^e#p*.com]
=•
=.
21.解:(1)补充表格如下:
气温分组
划记
频数
12≤x<17
3
17≤x<22
10
22≤x<27
5
27≤x<32
2
(2)补全频数分布直方图如下:[www.z~^&z#step.co@m]
(3)由频数分布直方图知,17≤x<22时天数最多,有9天.[来&源@:~中教^#网]
22.
解:
工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,
理由是:过B作BD⊥AC于D,
∵AB>BD,BC>BD,AC>AB,
∴求出DB长和2.1m比较即可,
设BD=xm,
∵∠A=30°,∠C=45°,
∴DC=BD=xm,AD=BD=xm,[来&%源~^:中@教网]
∵AC=2(+1)m,
∴x+x=2(+1),
∴x=2,[来#%源:中国教育^&出版网@]
即BD=2m<2.1m,
∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.
【点评】本题考查了解直角三角形,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.
[来&源%:中*^~教网]
23.(1)证明:连接OD,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边BC的中点,
∴AO⊥BC,AO平分∠BAC,[来源:zzs#*t~e%^p.com]
∵AB与⊙O相切于点D,
∴OD⊥AB,
而OF⊥AC,
∴OF=OD,[来源:%&z~z^s@tep.com]
∴AC是⊙O的切线;
(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,
∴r2+()2=(r+1)2,解得r=1,
∴OD=1,OB=2,
∴∠B=30°,∠BOD=60°,
∴∠AOD=30°,
在Rt△AOD中,AD=OD=,
∴阴影部分的面积=2S△AOD﹣S扇形DOF
=2××1×﹣[来源#@:中%教&^网]
=﹣.[中@~国^*教&育出版网]
24.解:(1)设PQ解析式为y=kx+b
把已知点P(0,10),(,)代入得
解得:
∴y=﹣10x+10
当y=0时,x=1
∴点Q的坐标为(1,0)
点Q的意义是:
甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.
(2)设甲的速度为akm/h,乙的速度为bkm/h
由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时[来源#&:中教@^%网]
∴
∴
∴甲、乙的速度分别为6km/h、4km/h
25.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,
∴∠AEB=∠ABE,[中国教^@育出~&版网%]
又∵∠ABE+∠GDE=90°=∠AEB+∠DEG,
∴∠EDG=∠DEG,[来#源:zzs*tep.~com@^]
∴DG=EG,[来&%^源:中教网@~]
∴FG=AG,
又∵∠DGF=∠EGA,
∴△AEG≌Rt△FDG(SAS),
∴DF=AE,
又∵AE=AB=CD,
∴CD=DF;[来&源:中*^教@#网]
(2)如图,当GB=GC时,点G在BC的垂直平分线上,
分两种情况讨论:
①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,
∵GC=GB,[中#国%^@教育出版网~]
∴GH⊥BC,[来*源%:z#zstep.&co^m]
∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,[来源:zzs^@tep#*.c~om]
∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;
②当点G在AD左侧时,同理可得△ADG是等边三角形,[中国教%#&育出版@网^]
∴∠DAG=60°,
∴旋转角α=360°﹣60°=300°.
26.解:(1)∵B(1,0),∴OB=1,
∵OC=2OB=2,∴C(﹣2,0),
Rt△ABC中,tan∠ABC=2,
∴,[来%源#:@中教&^网]∴,∴AC=6,[来源%:中@国^教育~出版网#]∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,[来源~:中*^教网&%]
解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;
(2)①∵A(﹣2,6),B(1,0),[中*国教^&%育#出版网]
易得AB的解析式为:y=﹣2x+2,
设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),
∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),
x=1(舍)或﹣1,∴P(﹣1,6);
②∵M在直线PD上,且P(﹣1,6),
设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,[来源:中国*^教&育@#出版网]AB2=(1+2)2+62=45,[来@源^:#&中教网%]
分三种情况:
i)当∠AMB=90°时,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=3,
∴M(﹣1,3+)或(﹣1,3﹣);[来源:%@中#&教*网]
ii)当∠ABM=90°时,有AB2+BM2=AM2,
∴45+4+y2=1+(y﹣6)2,
y=﹣1,
∴M(﹣1,﹣1),
iii)当∠BAM=90°时,有AM2+AB2=BM2,
∴1+(y﹣6)2+45=4+y2,
y=,[w~ww.zz&^st#ep.co*m]∴M(﹣1,);
综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
2011至2018年杭州市八年中考数学试卷与答案: 这是一份2011至2018年杭州市八年中考数学试卷与答案,共39页。试卷主要包含了 下列各式中,正确的是, 若,且≥2,则等内容,欢迎下载使用。
2011年至2018年温州市八年中考数学试卷及答案: 这是一份2011年至2018年温州市八年中考数学试卷及答案,共58页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2016年至2018年临沂市三年中考数学试卷: 这是一份2016年至2018年临沂市三年中考数学试卷,共20页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。