|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年江西省赣州市大余中学高一下学期期中考试数学试题含答案
    立即下载
    加入资料篮
    2022-2023学年江西省赣州市大余中学高一下学期期中考试数学试题含答案01
    2022-2023学年江西省赣州市大余中学高一下学期期中考试数学试题含答案02
    2022-2023学年江西省赣州市大余中学高一下学期期中考试数学试题含答案03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年江西省赣州市大余中学高一下学期期中考试数学试题含答案

    展开
    这是一份2022-2023学年江西省赣州市大余中学高一下学期期中考试数学试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江西省赣州市大余中学高一下学期期中考试数学试题

     

    一、单选题

    1.下列说法正确的是(    

    A.零向量是没有方向的向量 B.零向量的长度为0

    C.任意两个单位向量的方向相同 D.同向的两个向量可以比较大小

    【答案】B

    【解析】根据零向量的定义和性质、单位向量的定义,同向向量的定义进行判断即可.

    【详解】解析:零向量的长度为0,方向是任意的,故A错误,B正确;任意两个单位向量的长度相等,但方向不一定相同,故C错误;不管是同向的向量还是不同向的向量,都不能比较大小,故D错误.

    故选:B

    【点睛】本题考查了零向量的定义和性质,考查了单位向量的定义,考查了同向向量的定义,属于基础题.

    2.设,则的一个可能值是(    

    A B1 C D

    【答案】D

    【分析】根据题意得到,从而得到,即可得到答案.

    【详解】因为

    所以,所以.

    故选:D

    3,则    

    A1 B C D

    【答案】A

    【分析】根据向量数量积的坐标运算法则计算.

    【详解】由题意,则

    故选:A

    【点睛】本题考查平面向量数量积的坐标表示,属于基础题.

    4.已知函数 ,若函数是周期为的偶函数,则可以是

    A B C D

    【答案】D

    【分析】分别代入化简.

    【详解】时,

    此时是非奇非偶函数,周期为

    时,

    此时是非奇非偶函数,周期为

    时,

    此时是非奇非偶函数,周期为

    时,

    此时是偶函数,周期为.

    故选D.

    【点睛】本题考查三角恒等变化和三角函数的性质.

    5.下列化简结果正确的个数为(    

            

                        

    A1 B2 C3 D4

    【答案】C

    【分析】直接由诱导公式及和差角的正弦、余弦、正切公式以及倍角公式依次判断即可.

    【详解】正确;

    正确;

    正确;

    错误;正确的有3.

    故选:C.

    6.关于给出下列命题:

    ,则该三角形为等腰三角形

    ,则是等腰三角形

    ,则是直角三角形

    中,恒有

    ,则是等边三角形

    其中正确命题的个数是(    

    A2 B3 C4 D5

    【答案】B

    【分析】根据每一项提供的条件,运用诱导公式以及ABC是三角形内角,逐项分析可以求解.

    【详解】对于

    ,因为BC是三角形内角,所以

    是等腰三角形,

    正确;

    对于 或者 ,即 或者

    是等腰三角形或者是直角三角形,

    错误;

    对于 ,或者

    或者 是直角三角形或是钝角三角形,

    错误;

    对于,设C 的最大角,若C是钝角,则

    不等式 恒成立;

    ,则

    原不等式成立;

    ,则必有  

    不论为何种三角形,不等式恒成立,

    正确;

    对于

    由于 ,则必有

    A=B=C,即 是等边三角形,

    正确;

    故选:B.

    7.已知函数的两条相邻的对称轴的间距为,现将的图象向左平移个单位后得到一个偶函数,则的一个可能取值为(    

    A B

    C D

    【答案】B

    【解析】求出函数的最小正周期,可求出的值,然后求出变换后所得函数的解析式,根据函数的奇偶性可得出关于的等式,由此可得出结果.

    【详解】由于函数的两条相邻的对称轴的间距为,该函数的最小正周期为

    ,则

    将函数的图象向左平移个单位后,得到函数

    由于函数为偶函数,则,可得

    时,.

    故选:B.

    【点睛】本题考查利用图象变换求函数解析式,同时也考查了利用函数的奇偶性求参数,考查推理能力与计算能力,属于中等题.

    8.已知是函数的最大值,若存在实数使得对任意实数总有成立,则的最小值是(    

    A B C D

    【答案】D

    【分析】利用正弦的和角公式以及辅助角公式化简至标准型正弦函数,解得,即可容易求得结果.

    【详解】因为

    ,周期

    又存在实数,对任意实数总有成立,

    的最小值为

    的最小值为

    故选:D

     

    二、多选题

    9.将的图象上的所有点的横坐标伸长到原来的2倍,再向左平移个单位长度得到的图象(    

    A.若为奇函数,则的值可能为

    B.若为奇函数,则的值可能为

    C.若为偶函数,则的值可能为

    D.若为偶函数,则的值可能为

    【答案】BC

    【分析】先利用三角函数图象变换规律表示出的解析式,然后根据函数奇偶性的性质逐个分析判断即可.

    【详解】由题可知

    为奇函数,则,即A错误,B正确;

    为偶函数,则,即C正确,D错误.

    故选:BC.

    10.已知函数的图象关于直线对称,则(    

    A.由可得的整数倍

    B.函数为偶函数

    C.函数上为减函数

    D.函数在区间上有20个零点

    【答案】BCD

    【分析】由正弦函数图象的对称轴求得,然后利用正弦函数性质判断各选项.

    【详解】由已知

    ,所以

    A.当时,,但不是的整数倍,A错;

    B是偶函数,B正确;

    C时,,由正弦函数性质知它是减函数,C正确;

    D,在上,时,,因此有两个零点,而含有10个周期,因此有20个零点,D正确.

    故选:BCD

    11.在单位圆上任取一点,圆轴正向的交点是,设将绕原点逆时针旋转到所成的角为,记关于的表达式分别为,则下列说法正确的是(    

    A是偶函数,是奇函数

    B为增函数,为减函数

    C对于恒成立

    D.函数对于恒成立

    【答案】AC

    【分析】由三角函数定义得出的表达式,然后由正弦函数和余弦函数的性质判断.

    【详解】依题意.所以是偶函数,是奇函数,A选项正确;先增后减,为增函数,所以B选项错误;

    借助单位圆中的三角函数线,可以证明C正确;,所以D选项错误.

    故选:AC

    1220229月钱塘江多处出现罕见潮景鱼鳞潮鱼鳞潮的形成需要两股涌潮,一股是波状涌潮,另外一股是破碎的涌潮,两者相遇交叉就会形成像鱼鳞一样的涌潮.若波状涌潮的图像近似函数的图像,而破碎的涌潮的图像近似是函数的导函数)的图像.已知当时,两潮有一个交叉点,且破碎的涌潮的波谷为-4,则(   

    A B

    C是偶函数 D在区间上单调

    【答案】BC

    【分析】,求得, 由题意得,由,解出,由破碎的涌潮的波谷为-4,解得,得到解析式,逐个判断选项.

    【详解】,则, 由题意得,即,故,因为,所以,所以,则选项A错误;

    因为破碎的涌潮的波谷为,所以的最小值为,即,得,所以,则, 故选项B正确;

    因为,所以,所以为偶函数 ,则选项C正确;

    ,由, 得, 因为函数 上单调递增,在 上单调递减,所以在区间上不单调,则选项D错误.

    故选:BC

     

    三、填空题

    13.已知平面向量的夹角为,则      .

    【答案】

    【分析】利用,展开后利用向量的数量积的定义及运算即可求解.

    【详解】平面向量的夹角为

    故答案为:.

    14.计算         

    【答案】/

    【分析】利用指数、对数运算及诱导公式,特殊角的三角函数值计算作答.

    【详解】

    .

    故答案为:

    15.在平面直角坐标系中,点是单位圆上第一象限内的点,,若,则的值为     

    【答案】

    【分析】首先由三角函数的定义有为第一象限角,,则为第二象限角,由平方关系可求得的值,再根据运用两角差的余弦公式可得.

    【详解】由三角函数的定义有为第二象限角

    故答案为:.

    16.已知),若时,有唯一解,则         

    【答案】-5

    【分析】根据的范围求出的范围,再由有唯一解可得的取值范围,又,分别讨论的值,求出有唯一解时的值.

    【详解】根据,所以

    因为有唯一解,所以,解得

    ,则

    解得,因为,可得不唯一,舍去;

    ,则

    解得,因为,可得唯一;

    ,则

    解得,因为,可得无解,舍去;

    ,则

    解得,因为,可得无解,舍去;

    ,则

    解得,因为,可得无解,舍去;

    ,则

    解得,因为,可得无解,舍去;

    综上所述,的值为-5.

    故答案为:-5.

     

    四、解答题

    17.(1)若,求的值;

    2)计算:

    【答案】1;(2

    【分析】1)利用商数关系化弦为切即可求解;

    2)利用对数的运算及指数的运算即可求解.

    【详解】解:(1)因为

    所以

    2

    18.已知

    (1)化简

    (2)已知,求的值.

    【答案】(1)

    (2)

     

    【分析】1)利用诱导公式和二倍角的余弦公式,进行化简,可得答案;

    2)利用两角和的正切公式,结合(1)的结果,求得答案.

    【详解】1;

    2)由

    可得:

    .

    19.已知函数.

    (1)的最小正周期;

    (2),求函数的值域和单调区间.

    【答案】(1)

    (2)值域是,递增区间是,递减区间是.

     

    【分析】1)根据诱导公式,结合降幂公式、辅助角公式、正弦型函数的最小正周期公式求解作答.

    2)利用正弦函数的性质求出指定区间上的值域及单调区间作答.

    【详解】1)依题意,

    所以的最小正周期为.

    2)由,得,则,因此

    即函数的值域是

    又正弦函数上单调递增,在上单调递减,

    得:,由得:

    因此函数上单调递增,在上单调递减,

    所以函数的值域是,递增区间是,递减区间是.

    20.已知函数

    1)当时,求的最小正周期及单调区间;

    2)若上恒成立,求的取值范围.

    【答案】14;(2.

    【分析】1)当时,利用正切函数的周期公式和单调性即可求出的最小正周期及单调区间;

    2)根据上恒成立,建立周期与最值的关系,解不等式即可求出的取值范围.

    【详解】1)当时,的最小正周期,故最小正周期为4

    要求的单调区间,只需,解得:

    的增区间为,无单减区间.

    2函数的周期上恒成立,上为严格增函数,

    ,即,即

    21.如图,为了测量某条河流两岸两座高塔底部AB之间的距离,观测者在其中一座高塔的顶部D测得另一座高塔底部B和顶部C的视角为45°(即),已知两座高塔的高AD30mBC75m,塔底AB在同一水平面上,且

    (1)求两座高塔底部AB之间的距离;

    (2)为庆祝2023年春节的到来,在两座高塔顶部各安装了一个大型彩色灯饰.政府部门为了方便市民观赏这两个彩色灯饰,决定在AB之间的点P处(点P在线段AB上)搭建一个水上观景台,为了达到最佳的观赏效果,要求DPC最大,问:在距离A点多远处搭建,才能达到最佳的观赏效果?

    【答案】(1)90m

    (2)在距离A米处搭建,才能达到最佳的观赏效果.

     

    【分析】1)分析图中的几何关系,运用正切的两角和公式求解;

    2)设 为变量,运用正切两角和公式和基本不等式求解.

    【详解】1)由题知,ADABBCABBC75AD30

    如图,作DEBC,垂足为E

    则四边形ABED为矩形,所以BE30CE45

    ,则

       (舍),

    两座高塔底部AB之间的距离为90m

    2)设APt0≤t≤90),则

    时,

    所以

    所以

    时,,符合上式;

    时,,符合上式.

    60≤m≤150),则

    所以

    当且仅当时,等号成立.

    又因为在锐角范围内,越大,DPC越大,

    所以当时,DPC取得最大值,此时

    在距离A米处搭建,才能达到最佳的观赏效果;

    综上,两座高塔底部AB之间的距离为90m;在距离A米处搭建,才能达到最佳的观赏效果.

    22.已知函数.

    1)若函数的最大值是最小值的倍,求实数的值;

    2)若函数存在零点,求函数的零点.

    【答案】1.2)当时,零点为;当时,零点为

    【分析】1)将整理为,换元可得;根据对称轴位置的不同,分别在四种情况下构造最大值和最小值关系的方程,解方程求得结果;(2)根据(1)中最值的取值范围可知若存在零点,必有,从而可知的取值,进而得到零点.

    【详解】1

    时,,令

    时,

    ,解得:

    得:

    时,

    ,解得:

    得:

    时,

    ,解得:

    得:

    时,

    ,解得:

    得:

    综上所述:

    2)由(1)知,

    若函数存在零点,则必有:

    时,,此时函数的零点为:

    时,,此时函数的零点为:

    【点睛】本题考查余弦型函数的最值、零点的求解问题,关键是能够通过换元法将问题转变为二次函数图象的讨论问题,从而根据对称轴位置确定最值取得的点;同时求解零点时,根据最值的取值范围可确定余弦的取值.

     

    相关试卷

    江西省大余中学2022-2023学年高二下学期期中数学试题: 这是一份江西省大余中学2022-2023学年高二下学期期中数学试题,共20页。

    2022-2023学年江西省赣州市大余县九师联盟联考高一下学期5月月考数学试题含答案: 这是一份2022-2023学年江西省赣州市大余县九师联盟联考高一下学期5月月考数学试题含答案,共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江西省赣州市兴国中学、兴国平川中学高一下学期5月联合测评数学试题含答案: 这是一份2022-2023学年江西省赣州市兴国中学、兴国平川中学高一下学期5月联合测评数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022-2023学年江西省赣州市大余中学高一下学期期中考试数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map