2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.3函数的奇偶性、周期性课件
展开
这是一份2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.3函数的奇偶性、周期性课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,函数的奇偶性,f-x=fx,最小正数,-22,1求实数m的值,ln2等内容,欢迎下载使用。
1.了解函数奇偶性的含义,了解函数的周期性及其几何意义.2.会依据函数的性质进行简单的应用.
f(-x)=-f(x)
2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且_____________,那么函数y=f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个_____的正数,那么这个_________就叫做f(x)的最小正周期.
f(x+T)=f(x)
1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).
判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)为奇函数,则f(0)=0.( )(2)不存在既是奇函数,又是偶函数的函数.( )(3)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( )(4)若T是函数f(x)的一个周期,则kT(k∈N*)也是函数的一个周期.( )
1.若偶函数f(x)在区间[-2,-1]上单调递减,则函数f(x)在区间[1,2]上A.单调递增,且有最小值f(1)B.单调递增,且有最大值f(1)C.单调递减,且有最小值f(2)D.单调递减,且有最大值f(2)
偶函数f(x)在区间[-2,-1]上单调递减,则由偶函数的图象关于y轴对称,则有f(x)在[1,2]上单调递增,即有最小值为f(1),最大值为f(2).对照选项,A正确.
2.已知函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,则f(-2)=____.
因为函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,所以f(-2)=-f(2)=-(2+4)=-6.
3.已知函数f(x)是定义在R上的周期为4的奇函数,若f(1)=1,则f(2 023)=_____.
因为函数f(x)是定义在R上的周期为4的奇函数,所以f(2 023)=f(506×4-1)=f(-1)=-f(1)=-1.
例1 (多选)下列函数是奇函数的是A.f(x)=tan x B.f(x)=x2+x
对于B,函数的定义域为R,关于原点对称,且f(-x)=x2-x≠±f(x),故函数为非奇非偶函数,不符合题意;
对于D,函数定义域为{x|x≠-1},不关于原点对称,故函数为非奇非偶函数,不符合题意.
判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.
跟踪训练1 (多选)下列函数中,既不是奇函数,也不是偶函数的是
记f(x)=x+ex,则f(-1)=-1+e-1,f(1)=1+e,显然f(-1)≠f(1),f(-1)≠-f(1),故y=x+ex为非奇非偶函数;
命题点1 利用奇偶性求值(解析式)例2 (1)(2022·十堰模拟)已知y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2+ax+a+1,则f(-2)等于A.-2 B.2 C.-6 D.6
因为y=f(x)是定义在R上的奇函数,则有f(0)=a+1=0,解得a=-1,当x≥0时,f(x)=x2-x,则f(-2)=-f(2)=-2.
(2)(2023·吕梁模拟)已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=2x+x-1,则当x0,所以y=2x3+4x在(0,1)上单调递增,故A满足题意;对于B,定义域为R,f(-x)=-x+sin x=-f(x),故为奇函数,又y′=1-cs x≥0,且y′不恒为0,所以y=x+sin(-x)在(0,1)上单调递增,故B满足题意;对于C,定义域为{x|x≠0},f(-x)=lg2|x|=f(x),故为偶函数,故C不满足题意;
对于D,定义域为R,f(-x)=2-x-2x=-f(x),为奇函数,又y′=2xln 2+2-xln 2>0,所以y=2x-2-x在(0,1)上单调递增,故D满足题意.
2.(2023·聊城模拟)已知函数f(x)的定义域为R,则“f(x)是偶函数”是“|f(x)|是偶函数”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
偶函数的图象关于y轴对称,奇函数的图象关于原点对称,根据这一特征,若f(x)是偶函数,则|f(x)|是偶函数,若f(x)是奇函数,|f(x)|也是偶函数,所以“f(x)是偶函数”是“|f(x)|是偶函数”的充分不必要条件.
∵f(x)是定义在R上的奇函数,∴f(0)=0,又f(x)在R上的周期为2,
4.(2023·长沙模拟)已知偶函数f(x)对于任意x∈R都有f(x+2)=f(x),且f(x)在区间[0,1]上单调递增,则f(-6.5),f(-1),f(0)的大小关系是A.f(-1)
相关课件
这是一份2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.6二次函数与幂函数课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,y=xα,奇函数,偶函数,即p0,解得a=-4,当a0时等内容,欢迎下载使用。
这是一份2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.2函数的单调性与最值课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,单调递增,单调递减,函数的最值,fx≤M,fx0=M,fx≥M,-11等内容,欢迎下载使用。
这是一份2024届高考数学一轮复习(新教材人教A版强基版)第二章函数2.12函数模型的应用课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,常见的函数模型,显然A正确B错误等内容,欢迎下载使用。