终身会员
搜索
    上传资料 赚现金

    (通用版)中考数学总复习考点17 全等三角形判定与性质定理(含解析) 试卷

    立即下载
    加入资料篮
    (通用版)中考数学总复习考点17 全等三角形判定与性质定理(含解析)第1页
    (通用版)中考数学总复习考点17 全等三角形判定与性质定理(含解析)第2页
    (通用版)中考数学总复习考点17 全等三角形判定与性质定理(含解析)第3页
    还剩23页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (通用版)中考数学总复习考点17 全等三角形判定与性质定理(含解析)

    展开

    这是一份(通用版)中考数学总复习考点17 全等三角形判定与性质定理(含解析),共26页。试卷主要包含了基本概念等内容,欢迎下载使用。


    专题17 全等三角形判定与性质定理

    1.基本概念
    (1)全等形:能够完全重合的两个图形叫做全等形.
    (2)全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上)
    (3)对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
    (4)对应边:全等三角形中互相重合的边叫做对应边.
    (5)对应角:全等三角形中互相重合的角叫做对应角.
    2.全等三角形的表示
    全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
    注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
    3.全等三角形的性质:全等三角形的对应角相等、对应边相等。
    4.三角形全等的判定定理
    (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
    (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
    (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
    (4)角角边定理:两角和其中一个角的对边对应相等的两个三角形全等(简写成AAS).
    5.直角三角形全等的判定:
    HL定理:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

    【例题1】(2020•甘孜州)如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是(  )

    A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC
    【答案】B
    【解析】利用等腰三角形的性质得∠ABC=∠ACB,AB=AC,然后根据全等三角形的判定方法对各选项进行判断.
    ∵△ABC为等腰三角形,
    ∴∠ABC=∠ACB,AB=AC,
    ∴当AD=AE时,则根据“SAS”可判断△ABE≌△ACD;
    当∠AEB=∠ADC,则根据“AAS”可判断△ABE≌△ACD;
    当∠DCB=∠EBC,则∠ABE=∠ACD,根据“ASA”可判断△ABE≌△ACD.
    【对点练习】如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是(  )

    A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC
    【答案】C.
    【解析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.
    A.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;
    B.∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;
    C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,本选项正确;
    D.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误。
    【例题2】(2020•北京)如图,在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是   (写出一个即可).

    【答案】BD=CD.
    【解析】由题意可得∠ABC=∠ACD,AB=AC,即添加一组边对应相等,可证△ABD与△ACD全等.
    ∵AB=AC,
    ∴∠ABD=∠ACD,
    添加BD=CD,
    ∴在△ABD与△ACD中

    ∴△ABD≌△ACD(SAS),
    【对点练习】(齐齐哈尔)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是   (只填一个即可).

    【答案】AB=DE.
    【解析】添加AB=DE;
    ∵BF=CE,
    ∴BC=EF,
    在△ABC和△DEF中,,
    ∴△ABC≌△DEF(SAS)
    【例题3】(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.

    【答案】见解析。
    【解析】由“AAS”可证△ABC≌△AED,可得AE=AB,AC=AD,由线段的和差关系可得结论.
    证明:∵ED⊥AB,
    ∴∠ADE=∠ACB=90°,∠A=∠A,BC=DE,
    ∴△ABC≌△AED(AAS),
    ∴AE=AB,AC=AD,
    ∴CE=BD.
    【对点练习】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.
    (1)求证:△ABC≌DEF;
    (2)若∠A=55°,∠B=88°,求∠F的度数.

    【答案】见解析。
    【解析】求出AC=DF,根据SSS推出△ABC≌△DEF.由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.
    证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF
    ∴AC=DF
    在△ABC和△DEF中,
    ∴△ABC≌△DEF(SSS)
    (2)由(1)可知,∠F=∠ACB
    ∵∠A=55°,∠B=88°
    ∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°
    ∴∠F=∠ACB=37°

    一、选择题
    1.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:
    ①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有(  )个.

    A.4 B.3 C.2 D.1
    【答案】B
    【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;
    由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;
    作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;
    假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故③错误;即可得出结论.
    【解析】∵∠AOB=∠COD=36°,
    ∴∠AOB+∠BOC=∠COD+∠BOC,
    即∠AOC=∠BOD,
    在△AOC和△BOD中,

    ∴△AOC≌△BOD(SAS),
    ∴∠OCA=∠ODB,AC=BD,故②正确;
    ∵∠OCA=∠ODB,
    由三角形的外角性质得:
    ∠CMD+∠OCA=∠COD+∠ODB,
    得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;
    作OG⊥AM于G,OH⊥DM于H,如图所示,

    则∠OGA=∠OHB=90°,
    在△OGA和△OHB中,
    ∵,
    ∴△OGA≌△OHB(AAS),
    ∴OG=OH,
    ∴OM平分∠AMD,故④正确;
    假设OM平分∠AOD,则∠DOM=∠AOM,
    在△AMO与△DMO中,

    ∴△AMO≌△OMD(ASA),
    ∴AO=OD,
    ∵OC=OD,
    ∴OA=OC,
    而OA<OC,故③错误;
    正确的个数有3个.
    2.如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于(  )

    A.35° B.45° C.60° D.100°
    【答案】D.
    【解析】∵△ABC≌△DEF,∠A=45°,∠F=35°
    ∴∠D=∠A=45°
    ∴∠E=180°﹣∠D﹣∠F=100°.
    3.(2020安顺模拟)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD(  )

    A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD
    【答案】D.
    【解析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.
    ∵AB=AC,∠A为公共角,
    A.如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;
    B.如添AD=AE,利用SAS即可证明△ABE≌△ACD;
    C.如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;
    D.如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.
    4.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为(  )

    A.a+c B.b+c C.a﹣b+c D.a+b﹣c
    【答案】D.
    【解析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;
    ∵AB⊥CD,CE⊥AD,BF⊥AD,
    ∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,
    ∴∠A=∠C,∵AB=CD,
    ∴△ABF≌△CDE,
    ∴AF=CE=a,BF=DE=b,
    ∵EF=c,
    ∴AD=AF+DF=a+(b﹣c)=a+b﹣c
    5.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是(  )

    A. B.2 C.2 D.
    【答案】B.
    【解析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.
    ∵BE⊥CE,AD⊥CE,
    ∴∠E=∠ADC=90°,
    ∴∠EBC+∠BCE=90°.
    ∵∠BCE+∠ACD=90°,
    ∴∠EBC=∠DCA.
    在△CEB和△ADC中,

    ∴△CEB≌△ADC(AAS),
    ∴BE=DC=1,CE=AD=3.
    ∴DE=EC﹣CD=3﹣1=2
    6.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    【答案】C.
    【解析】∵△ABC≌△AEF,
    ∴AC=AF,故①正确;
    ∠EAF=∠BAC,
    ∴∠FAC=∠EAB≠∠FAB,故②错误;
    EF=BC,故③正确;
    ∠EAB=∠FAC,故④正确;
    综上所述,结论正确的是①③④共3个.
    二、填空题
    7.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是   .(只填一个即可)

    【答案】AD=AC(∠D=∠C或∠ABD=∠ABC等).
    【解析】利用全等三角形的判定方法添加条件.
    ∵∠DAB=∠CAB,AB=AB,
    ∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;
    当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;
    当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.
    8.(2020•辽阳)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为  .

    【答案】2
    【解析】依据三角形中位线定理,即可得到MNBC=2,MN∥BC,依据△MNE≌△DCE(AAS),即可得到CD=MN=2.
    ∵M,N分别是AB和AC的中点,
    ∴MN是△ABC的中位线,
    ∴MNBC=2,MN∥BC,
    ∴∠NME=∠D,∠MNE=∠DCE,
    ∵点E是CN的中点,
    ∴NE=CE,
    ∴△MNE≌△DCE(AAS),
    ∴CD=MN=2.
    9.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件   ,使Rt△ABC和Rt△EDF全等.

    【答案】AB=ED.
    【解析】本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC=EF或AE=CF等,只要符合全等三角形的判定定理即可.
    添加的条件是:AB=ED,
    理由是:∵在△ABC和△EDF中

    ∴△ABC≌△EDF(ASA)
    10.(四川成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为______.
    【答案】9
    【解析】此题考察的是全等三角形的性质和判定,因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=二次,EC=9.

    11.(•湖南邵阳)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是  .(不添加任何字母和辅助线)

    【答案】AB=AC或∠ADC=∠AEB或∠ABE=∠ACD。
    【解析】根据图形可知证明△ADC≌△AEB已经具备了一个公共角和一对相等边,因此可以利用ASA.SAS、AAS证明两三角形全等.
    ∵∠A=∠A,AD=AE,
    ∴可以添加AB=AC,此时满足SAS;
    添加条件∠ADC=∠AEB,此时满足ASA;
    添加条件∠ABE=∠ACD,此时满足AAS,
    故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD。
    12.(•山东临沂)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是  .

    【答案】8.
    【解析】根据垂直的定义得到∠BCD=90°,得到长CD到H使DH=CD,由线段中点的定义得到AD=BD,根据全等三角形的性质得到AH=BC=4,∠H=∠BCD=90°,求得CD=2,于是得到结论.
    ∵DC⊥BC,
    ∴∠BCD=90°,
    ∵∠ACB=120°,∴∠ACD=30°,
    延长CD到H使DH=CD,
    ∵D为AB的中点,
    ∴AD=BD,
    在△ADH与△BCD中,,
    ∴△ADH≌△BCD(SAS),
    ∴AH=BC=4,∠H=∠BCD=90°,
    ∵∠ACH=30°,
    ∴CH=AH=4,
    ∴CD=2,
    ∴△ABC的面积=2S△BCD=2××4×2=8,
    故答案为:8.

    三、解答题
    13.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.

    【答案】见解析。

    【解析】证明△ABC≌△CDE(ASA),可得出结论.
    证明:∵AB⊥BD,ED⊥BD,AC⊥CE,
    ∴∠ACE=∠ABC=∠CDE=90°,
    ∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,
    ∴∠ACB=∠CED.
    在△ABC和△CDE中,

    ∴△ABC≌△CDE(ASA),
    ∴AB=CD.
    14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.

    【答案】见解析。
    【解析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.
    证明:在△ABE与△ACD中

    ∴△ABE≌△ACD.
    ∴AD=AE.
    ∴BD=CE.
    15.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.

    【答案】见解析。
    【解析】首先利用平行线的性质得出∠ACB=∠DFE,进而利用全等三角形的判定定理ASA,进而得出答案.
    证明:∵AC∥DF,
    ∴∠ACB=∠DFE,
    ∵BF=CE,
    ∴BC=EF,
    在△ABC和△DEF中,,
    ∴△ABC≌△DEF(ASA).
    16.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.
    求证:(1)△ABF≌△DCE;
    (2)AF∥DE.

    【答案】见解析。
    【分析】(1)先由平行线的性质得∠B=∠C,从而利用SAS判定△ABF≌△DCE;
    (2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.
    【解答】证明:(1)∵AB∥CD,
    ∴∠B=∠C,
    ∵BE=CF,
    ∴BE﹣EF=CF﹣EF,
    即BF=CE,
    在△ABF和△DCE中,
    ∵,
    ∴△ABF≌△DCE(SAS);
    (2)∵△ABF≌△DCE,
    ∴∠AFB=∠DEC,
    ∴∠AFE=∠DEF,
    ∴AF∥DE.
    17.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
    (1)求证:△ABC≌△DCE.
    (2)连结AE,当BC=5,AC=12时,求AE的长.

    【答案】见解析。
    【分析】(1)由“AAS”可证△ABC≌△DCE;
    (2)由全等三角形的性质可得CE=BC=5,由勾股定理可求解.
    【解答】证明:(1)∵AB∥DE,
    ∴∠BAC=∠D,
    又∵∠B=∠DCE=90°,AC=DE,
    ∴△ABC≌△DCE(AAS);
    (2)∵△ABC≌△DCE,
    ∴CE=BC=5,
    ∵∠ACE=90°,
    ∴AE13.
    18.(2020•常德)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.
    (1)如图1,当D,B,F共线时,求证:
    ①EB=EP;
    ②∠EFP=30°;
    (2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.

    【答案】见解析。

    【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;
    ②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;
    (2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.
    【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,
    ∴∠A=90°﹣30°=60°,
    同理∠EDF=60°,
    ∴∠A=∠EDF=60°,
    ∴AC∥DE,
    ∴∠DMB=∠ACB=90°,
    ∵D是Rt△ABC斜边AB的中点,AC∥DM,
    ∴,
    即M是BC的中点,
    ∵EP=CE,即E是PC的中点,
    ∴ED∥BP,
    ∴∠CBP=∠DMB=90°,
    ∴△CBP是直角三角形,
    ∴BEPC=EP;
    ②∵∠ABC=∠DFE=30°,
    ∴BC∥EF,
    由①知:∠CBP=90°,
    ∴BP⊥EF,
    ∵EB=EP,
    ∴EF是线段BP的垂直平分线,
    ∴PF=BF,
    ∴∠PFE=∠BFE=30°;
    (2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,

    ∵EC=EP,∠DEC=∠QEP,
    ∴△QEP≌△DEC(SAS),
    则PQ=DC=DB,
    ∵QE=DE,∠DEF=90°
    ∴EF是DQ的垂直平分线,
    ∴QF=DF,
    ∵CD=AD,
    ∴∠CDA=∠A=60°,
    ∴∠CDB=120°,
    ∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,
    ∴△FQP≌△FDB(SAS),
    ∴∠QFP=∠BFD,
    ∵EF是DQ的垂直平分线,
    ∴∠QFE=∠EFD=30°,
    ∴∠QFP+∠EFP=30°,
    ∴∠BFD+∠EFP=30°.
    19.(2020•黔东南州)如图1,△ABC和△DCE都是等边三角形.
    探究发现
    (1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.
    拓展运用
    (2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.
    (3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.

    【答案】见解析。
    【分析】(1)依据等式的性质可证明∠BCD=∠ACE,然后依据SAS可证明△ACE≌△BCD;
    (2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;
    (3)如图2,过A作AF⊥CD于F,先根据平角的定义得∠ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得△ACD的面积,最后根据勾股定理可得AD的长.
    【解析】(1)全等,理由是:
    ∵△ABC和△DCE都是等边三角形,
    ∴AC=BC,DC=EC,∠ACB=∠DCE=60°,
    ∴∠ACB+∠ACD=∠DCE+∠ACD,
    即∠BCD=∠ACE,
    在△BCD和△ACE中,

    ∴△ACE≌△BCD( SAS);
    (2)如图3,由(1)得:△BCD≌△ACE,

    ∴BD=AE,
    ∵△DCE都是等边三角形,
    ∴∠CDE=60°,CD=DE=2,
    ∵∠ADC=30°,
    ∴∠ADE=∠ADC+∠CDE=30°+60°=90°,
    在Rt△ADE中,AD=3,DE=2,
    ∴AE,
    ∴BD;
    (3)如图2,过A作AF⊥CD于F,

    ∵B、C、E三点在一条直线上,
    ∴∠BCA+∠ACD+∠DCE=180°,
    ∵△ABC和△DCE都是等边三角形,
    ∴∠BCA=∠DCE=60°,
    ∴∠ACD=60°,
    在Rt△ACF中,sin∠ACF,
    ∴AF=AC×sin∠ACF=1,
    ∴S△ACD,
    ∴CF=AC×cos∠ACF=1,
    FD=CD﹣CF=2,
    在Rt△AFD中,AD2=AF2+FD23,
    ∴AD.







    相关试卷

    (通用版)中考数学总复习考点51 勾股定理的多种证明方法(含解析):

    这是一份(通用版)中考数学总复习考点51 勾股定理的多种证明方法(含解析),共20页。试卷主要包含了代数和几何紧密结合等内容,欢迎下载使用。

    (通用版)中考数学总复习考点47 中考数学转化思想(含解析):

    这是一份(通用版)中考数学总复习考点47 中考数学转化思想(含解析),共11页。试卷主要包含了 转化思想的含义,转化思想的表现形式,1米).,7﹣11,3m.,999,,8 B. 4等内容,欢迎下载使用。

    (通用版)中考数学总复习考点26 菱形(含解析):

    这是一份(通用版)中考数学总复习考点26 菱形(含解析),共27页。试卷主要包含了菱形的定义 ,菱形的性质,菱形的判定定理等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (通用版)中考数学总复习考点17 全等三角形判定与性质定理(含解析) 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map