所属成套资源:2022年中考数学真题分项汇编专题(含解析)
2022年中考数学真题分项汇编专题09 反比例函数(含解析)
展开
这是一份2022年中考数学真题分项汇编专题09 反比例函数(含解析),共56页。
专题09 反比例函数
一.选择题
1.(2022·湖北宜昌)已知经过闭合电路的电流(单位:)与电路的电阻(单位:)是反比例函数关系.根据下表判断和的大小关系为( )
5
…
…
…
…
…
1
20
30
40
50
60
70
80
90
100
A. B. C. D.
【答案】A
【分析】根据电流与电路的电阻是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x和y的变化规律是单调的,即可判断
【详解】∵电流与电路的电阻是反比例函数关系
由表格:;
∴在第一象限内,I随R的增大而减小
∵
∴故选:A
【点睛】本题考查双曲线图像的性质;解题关键是根据表格判断出双曲线在第一象限,单调递减
2.(2021·贵州黔西)对于反比例函数y=﹣,下列说法错误的是( )
A.图象经过点(1,﹣5) B.图象位于第二、第四象限
C.当x<0时,y随x的增大而减小 D.当x>0时,y随x的增大而增大
【答案】C
【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.
【详解】解:反比例函数y=﹣,
A、当x=1时,y=﹣=﹣5,图像经过点(1,-5),故选项A不符合题意;
B、∵k=﹣5<0,故该函数图象位于第二、四象限,故选项B不符合题意;
C、当x<0时,y随x的增大而增大,故选项C符合题意;
D、当x>0时,y随x的增大而增大,故选项D不符合题意;
故选C.
【点睛】本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.
3.(2022·湖南邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是( )
A.1 B. C.2 D.
【答案】B
【分析】由反比例函数的几何意义可知,k=1,也就是△AOB的面积的2倍是1,求出△AOB的面积是.
【详解】解:设A(x,y)则OB=x,AB=y,
∵A为反比例函数y=图象上一点,∴xy=1,
∴S△ABO=AB•OB=xy=×1=,故选:B.
【点睛】本题考查反比例函数的几何意义,即k的绝对值,等于△AOB的面积的2倍,数形结合比较直观.
4.(2022·湖北武汉)已知点,在反比例函数的图象上,且,则下列结论一定正确的是( )
A. B. C. D.
【答案】C
【分析】把点A和点B的坐标代入解析式,根据条件可判断出、的大小关系.
【详解】解:∵点,)是反比例函数的图象时的两点,
∴.
∵,
∴.故选:C.
【点睛】本题考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.
5.(2022·江苏扬州)某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)与该校参加竞赛人数的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )
A.甲 B.乙 C.丙 D.丁
【答案】C
【分析】根据反比例函数图像与性质求解即可得到结论.
【详解】解:描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,设反比例函数表达式为,则令甲、乙、丙、丁,
过甲点作轴平行线交反比例函数于,过丙点作轴平行线交反比例函数于,如图所示:
由图可知,
、乙、、丁在反比例函数图像上,
根据题意可知优秀人数,则
①,即乙、丁两所学校优秀人数相同;
②,即甲学校优秀人数比乙、丁两所学校优秀人数少;
③,即丙学校优秀人数比乙、丁两所学校优秀人数多;
综上所述:甲学校优秀人数乙学校优秀人数丁学校优秀人数丙学校优秀人数,
在这次党史知识竞赛中成绩优秀人数最多的是丙学校,
故选:C.
【点睛】本题考查反比例函数图像与性质的实际应用题,读懂题意,并熟练掌握反比例函数的图像与性质是解决问题的关键.
6.(2022·天津)若点都在反比例函数的图像上,则的大小关系是( )
A. B. C. D.
【答案】B
【分析】将三点坐标分别代入函数解析式求出,然后进行比较即可.
【详解】将三点坐标分别代入函数解析式,得:
,解得;
,解得;
,解得;
∵-8
相关试卷
这是一份中考数学真题分项汇编(三年2020-2022) 专题09 反比例函数,文件包含专题09反比例函数-三年2020-2022中考数学真题分项汇编全国通用原卷版docx、专题09反比例函数-三年2020-2022中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共170页, 欢迎下载使用。
这是一份三年(2021-2023)中考数学真题分项汇编(江苏专用)专题09反比例函数(原卷版+解析),共77页。试卷主要包含了函数的大致图像是,,则该函数的解析式为 等内容,欢迎下载使用。
这是一份2020年中考数学真题分项汇编专题09一次函数 (含解析),共38页。