终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十九讲 数学归纳法

    立即下载
    加入资料篮
    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三  推理与证明第三十九讲  数学归纳法第1页
    还剩1页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十九讲 数学归纳法

    展开

    这是一份2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十九讲 数学归纳法,共2页。试卷主要包含了已知数列满足,已知函数,设为的导数,,设实数,整数,,已知函数,.等内容,欢迎下载使用。
    专题十三  推理与证明三十九  数学归纳法解答题1.(2017浙江)已知数列满足:证明:当2(2015湖北) 已知数列的各项均为e为自然对数的底数)求函数的单调区间,并比较e的大小;)计算,由此推测计算公式,并给证明;,数列的前项和分别记为,, 证明:3(2014江苏)已知函数,设的导数,的值;2)证明:对任意的,等式成立.4.(2014安徽)设实数,整数证明:当时,)数列满足证明:5.(2014重庆)设)若,求及数列的通项公式;)若,问:是否存在实数使得对所有成立?证明你的结论. 62012湖北)(已知函数,其中为有理数,且. 的最小值;)试用()的结果证明如下命题:设为正有理数. ,则)请将()中的命题推广到一般形式,并用数学归纳法证明你所推广的命题注:为正有理数时,有求导公式.7.(2011湖南)已知函数.)求函数的零点个数并说明理由;)设数列{})满足,证明:存在常数使得对于任意的,都有  

    相关试卷

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十九讲 数学归纳法答案:

    这是一份2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十九讲 数学归纳法答案,共10页。试卷主要包含了【解析】用数学归纳法证明,【解析】的定义域为,,【解析】由已知,得,【解析】证,【解析】,【解析】,令,解得.,【解析】由,而,等内容,欢迎下载使用。

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十八讲 推理与证明答案:

    这是一份2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十八讲 推理与证明答案,共17页。试卷主要包含了B【解析】解法一 因为,所以,D【解析】∵,,,,,等内容,欢迎下载使用。

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十八讲 推理与证明:

    这是一份2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题十三 推理与证明第三十八讲 推理与证明,共12页。试卷主要包含了96等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map