2022-2023学年广东省东莞市四海教育集团六校联考数学七年级第二学期期末考试试题含答案
展开
这是一份2022-2023学年广东省东莞市四海教育集团六校联考数学七年级第二学期期末考试试题含答案,共7页。试卷主要包含了若m<n,则下列结论正确的是,如图直线l1等内容,欢迎下载使用。
2022-2023学年广东省东莞市四海教育集团六校联考数学七年级第二学期期末考试试题(时间:120分钟 分数:120分) 学校_______ 年级_______ 姓名_______ 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。 一、选择题(每小题3分,共30分)1.如图,已知平行四边形中,则( )A. B. C. D.2.某数学兴趣小组6名成员通过一次数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说法正确的是( )A.中位数是92.5 B.平均数是92 C.众数是96 D.方差是53.函数y=中,自变量x的取值范围是( )A.x>-3 B.x≠0 C.x>-3且x≠0 D.x≠-34.在某人才招聘会上,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,根据这个要求,听、说、读、写”四项技能测试比较合适的权重设计是 A. B. C. D.5.如图,在中,点为的中点,平分,且于点,延长交于点.若,,则的长为( )A.5 B.6 C.7 D.86.若m<n,则下列结论正确的是( )A.2m>2n B.m﹣4<n﹣4 C.3+m>3+n D.﹣m<﹣n7.如图直线l1:y=ax+b,与直线l2:y=mx+n交于点A(1,3),那么不等式ax+b<mx+n的解集是( )A.x>3 B.x<3 C.x>1 D.x<18.如图,O既是AB的中点,又是CD的中点,并且AB⊥CD.连接AC、BC、AD、BD,则AC,BC,AD,BD这四条线段的大小关系是( )A.全相等B.互不相等C.只有两条相等D.不能确定9.在平面直角坐标系中,点A、B、C、D是坐标轴上的点,,点,,点在如图所示的阴影部分内部(不包括边界),则a的取值范围是( )A. B. C. D.10.矩形具有而平行四边形不一定具有的性质是( )A.对边相等 B.对角相等C.对角线相等 D.对角线互相平分二、填空题(本大题共有6小题,每小题3分,共18分)11.已知a+ = ,则a-=__________12.若关于x的方程产生增根,那么 m的值是______.13.1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.14.我市在旧城改造中,计划在市内一块如下图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价元,则购买这种草皮至少需要______元.15.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.16.现有甲、乙两支足球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是__队三、解下列各题(本大题共8小题,共72分)17.(8分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线. 18.(8分)根据《佛山﹣环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线将串联起狮山、乐平、三水新城、水都基地、白坭等城镇节点,在这项工程中,有一段4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天.求甲、乙两个工程队平均每天各完成多少米? 19.(8分)如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集. 20.(8分)某商场计划购进冰箱、彩电相关信息如下表,若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中的值. 进价/(元/台)冰箱a彩电a-400 21.(8分)解不等式组:,并把它的解集在数轴上表示出来. 22.(10分)小辉为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图1. 小辉发现每月每户的用水量在之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变.根据小军绘制的图表和发现的信息,完成下列问题:(1) ,小明调查了 户居民,并补全图1;(1)每月每户用水量的中位数落在 之间,众数落在 之间;(3)如果小明所在的小区有1100户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数多少? 23.(10分)如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离, 24.(12分)化简求值:(1+)÷,其中x=﹣1. 参考答案 一、选择题(每小题3分,共30分)1、B2、B3、D4、A5、B6、B7、D8、A9、D10、C 二、填空题(本大题共有6小题,每小题3分,共18分)11、12、113、617414、150a15、4016、乙 三、解下列各题(本大题共8小题,共72分)17、(1)作图见解析;(2)作图见解析.18、甲工程队平均每天完成1米,乙工程队平均每天完成100米.19、(1)y=x+5;(2);(1)x>-1.20、121、不等式组的解集是,数轴表示见解析.22、(1)110,84,补图见解析;(1),;(3)700户23、公里24、,-2.
相关试卷
这是一份广东省东莞市四海教育集团六校联考2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年广东省东莞市四海教育集团六校联考数学九上期末教学质量检测试题含答案,共8页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份2023-2024学年广东省东莞市四海教育集团六校联考数学八年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,不等式3等内容,欢迎下载使用。