人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.3 直线的交点坐标与距离公式教学设计
展开2.3.1两条直线的交点坐标(第一课时)
(人教A版普通高中教科书数学必修第一册第二章)
教学目标
1. 知识与技能
会求利用二元一次方程组的解的情况来判断直线和直线是否相交,并能熟练地求出交点.
2. 过程和方法
1)经历两直线交点坐标的求法,会初步判断两直线位置关系:相交或平行.
2)学会用代数方程的解来研究平面中两条直线的位置关系.
3. 情感、态度和价值观
感受用代数方法研究几何问题的方便,增强学习解析几何学的信心.
教学重点,难点
重点:判断两直线是否相交,求交点坐标。
难点:两直线相交与二元一次方程的关系。
教学过程
导语
在平面几何中,我们对直线做了定性研究,引入平面直角坐标系后,我们用二元一次方程表示直线,直线的方程就是相应直线上每一点的坐标所满足的一个关系式,这样我们可以通过方程把握直线上的点,进而用代数方法对直线进行定量研究,例如求两条直线的交点,坐标平面内与点、直线相关的距离问题等.
一、求相交直线的交点坐标
问题1 已知两条直线l1:x+y-5=0,l2:x-y-3=0,画出两条直线的图象,分析交点坐标M与直线l1,l2的方程有什么关系?
提示 直线l1,l2的图象如图所示.点M既在直线l1上,也在直线l2上.满足直线l1的方程x+y-5=0,也满足直线l2的方程x-y-3=0.
即交点坐标是方程组的解.
知识梳理
已知两条直线的方程是l1:A1x+B1y+C1=0, l2:A2x+B2y+C2=0,设这两条直线的交点为P,则点P既在直线l1上,也在直线l2上.所以点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标就是方程组的解.
例1 求经过两直线l1:3x+4y-2=0和l2:2x+y+2=0的交点且过坐标原点的直线l的方程.
解 方法一 由方程组
解得
即l1与l2的交点坐标为(-2,2).
∵直线过坐标原点,
∴其斜率k==-1.
故直线方程为y=-x,即x+y=0.
方法二 ∵l2不过原点,
∴可设l的方程为3x+4y-2+λ(2x+y+2)=0(λ∈R),
即(3+2λ)x+(4+λ)y+2λ-2=0.
将原点坐标(0,0)代入上式,得λ=1,
∴直线l的方程为5x+5y=0,即x+y=0.
反思感悟 求与已知两直线的交点有关的问题,可有以下两种解法:
(1)先求出两直线交点,将问题转化为过定点的直线,然后再利用其他条件求解.
(2)运用过两直线交点的直线系方程:若两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0有交点,则过l1与l2交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ为待定常数,不包括直线l2),设出方程后再利用其他条件求解.
跟踪训练1 求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程.
解 方法一 由方程组
得即P(0,2).
∵l⊥l3,l3的斜率为,
∴kl=-,
∴直线l的方程为y-2=-x,
即4x+3y-6=0.
方法二 ∵直线l过直线l1和l2的交点,
∴可设直线l的方程为x-2y+4+λ(x+y-2)=0,
即(1+λ)x+(λ-2)y+4-2λ=0.
∵l与l3垂直,
∴3(1+λ)+(-4)(λ-2)=0,∴λ=11,
∴直线l的方程为12x+9y-18=0,即4x+3y-6=0.
二、判断两直线位置关系的方法
知识梳理
已知直线l1:A1x+B1y+C1=0(A+B≠0),直线l2:A2x+B2y+C2=0(A+B≠0):
方程组的解 | 一组 | 无数组 | 无解 |
直线l1与l2的公共点的个数 | 一个 | 无数个 | 零个 |
直线l1与l2的位置关系 | 相交 | 重合 | 平行 |
注意点:
(1)判断两直线位置关系的方法,关键是看两直线的方程组成的方程组的解的情况.
有唯一解的等价条件是A1B2-A2B1≠0,即两条直线相交的等价条件是A1B2-A2B1≠0.
(2)虽然利用方程组解的个数可以判断两直线的位置关系,但是由于运算量较大,一般较少使用.
例2 (教材P71例2改编)分别判断下列直线是否相交,若相交,求出交点坐标.
(1)l1:2x-y=7和l2:3x+2y-7=0;
(2)l1:2x-6y+4=0和l2:4x-12y+8=0;
(3)l1:4x+2y+4=0和l2:y=-2x+3.
解 (1)方程组的解为
因此直线l1和l2相交,交点坐标为(3,-1).
(2)解方程组
①×2得4x-12y+8=0.
①和②可以化为同一个方程,即①和②表示同一条直线,l1与l2重合.
(3)方程组无解,这表明直线l1和l2没有公共点,故l1∥l2.
反思感悟 判断两直线位置关系的方法,关键是看两直线的方程组成的方程组的解的情况.
跟踪训练2 已知直线5x+4y=2a+1与直线2x+3y=a的交点位于第四象限,则a的取值范围是______.
答案
解析 由得
由得
所以-<a<2.
三、直线系过定点问题
问题2 观察下面的图象,发现直线都经过点M(4,1),怎么表示出经过M点的直线方程?
提示 当斜率存在时,y-1=k(x-4)(k∈R);当斜率不存在时,x=4.
知识梳理
1.平行于直线Ax+By+C=0的直线系方程为Ax+By+λ=0(λ≠C).
2.垂直于直线Ax+By+C=0的直线系方程为Bx-Ay+λ=0.
3.过两条已知直线A1x+B1y+C1=0,A2x+B2y+C2=0交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(不包括直线A2x+B2y+C2=0).
例3 无论m为何值,直线l:(m+1)x-y-7m-4=0恒过一定点P,求点P的坐标.
解 ∵(m+1)x-y-7m-4=0,
∴m(x-7)+(x-y-4)=0,
∴∴
∴点P的坐标为(7,3).
反思感悟 解含参数的直线恒过定点问题的策略
(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.
(2)方法二:含有一个参数的二元一次方程若能整理为A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组解得.若整理成y-y0=k(x-x0)的形式,则表示的所有直线必过定点(x0,y0).
跟踪训练3 已知直线(a-2)y=(3a-1)x-1,求证:无论a为何值,直线总经过第一象限.
证明 将直线方程整理为a(3x-y)+(-x+2y-1)=0.
因为直线3x-y=0与x-2y+1=0的交点为,
即直线系恒过第一象限内的定点,
所以无论a为何值,直线总经过第一象限.
1.知识清单:
(1)两条直线的交点.
(2)直线系过定点问题.
2.方法归纳:消元法、直线系法.
3.常见误区:对两直线相交条件认识模糊.
1.两条直线l1:2x-y-1=0与l2:x+3y-11=0的交点坐标为( )
A.(3,2) B.(2,3)
C.(-2,-3) D.(-3,-2)
答案 B
解析 解方程组得
2.不论m为何实数,直线l:(m-1)x+(2m-3)y+m=0恒过定点( )
A.(-3,-1) B.(-2,-1)
C.(-3,1) D.(-2,1)
答案 C
解析 直线l的方程可化为m(x+2y+1)-x-3y=0,
令解得
∴直线l恒过定点(-3,1).故选C.
3.斜率为-2,且过两条直线3x-y+4=0和x+y-4=0交点的直线方程为______________.
答案 2x+y-4=0
解析 设所求直线方程为3x-y+4+λ(x+y-4)=0,
即(3+λ)x+(λ-1)y+4-4λ=0,
∴k==-2,解得λ=5.
∴所求直线方程为2x+y-4=0.
4.若三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,则k=________.
答案 -
解析 解方程组得
又该点(-1,-2)也在直线x+ky=0上,
∴-1-2k=0,∴k=-.
高中数学人教A版 (2019)选择性必修 第一册2.3 直线的交点坐标与距离公式教案设计: 这是一份高中数学人教A版 (2019)选择性必修 第一册2.3 直线的交点坐标与距离公式教案设计,共6页。教案主要包含了教学内容,教学目标,教学重难点,教学过程等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第一册2.3 直线的交点坐标与距离公式教案设计: 这是一份高中数学人教A版 (2019)选择性必修 第一册2.3 直线的交点坐标与距离公式教案设计,共12页。教案主要包含了情境导学,探究新知,典例解析,小结,课时练等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第一册2.3 直线的交点坐标与距离公式教案设计: 这是一份人教A版 (2019)选择性必修 第一册2.3 直线的交点坐标与距离公式教案设计,共4页。教案主要包含了教学目标,教学重难点,教学方法等内容,欢迎下载使用。