所属成套资源:高考数学一轮复习考点测试刷题本(含答案解析)
高考数学一轮复习考点测试刷题本13 函数模型及其应用(含答案解析)
展开
这是一份高考数学一轮复习考点测试刷题本13 函数模型及其应用(含答案解析),共9页。
2020高考数学(文数)考点测试刷题本13 函数模型及其应用一 、选择题1.当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A.8 B.9 C.10 D.11 2.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A.16小时 B.20小时 C.24小时 D.28小时 3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油 4.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A.2018年 B.2019年 C.2020年 D.2021年 5.一名顾客计划到商场购物,他有三张优惠卷,每张优惠卷只能购买一件商品,根据购买商品的标价,三张优惠券优惠方式不同,具体如下:优惠券1:若标价超过50元,则付款时减免标价的10%.优惠券2:若标价超过100元,则付款时减免20元.优惠券3:若标价超过100元,则超过100元的部分减免18%.若该顾客购买某商品使用优惠券1比优惠券2、优惠券3减免的都多,则他购买的商品的标价可能为( )A.179元 B.199元 C.219元 D.239元 6.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量的增长速度保持不变,将该厂6年来这种产品的总产量C与时间t(年)的函数关系用图象表示,则正确的是( ) 7.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是( )A.40万元 B.60万元 C.120万元 D.140万元 8.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20 min,在乙地休息10 min后,他又以匀速从乙地返回到甲地用了30 min,则小王从出发到返回原地所经过的路程y与其所用的时间x的函数的图象为( ) 二 、填空题9.已知某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓房能全部租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设已出租的每套房子每月需要公司花费100元的日常维修等费用(设没有出租的房子不需要花这些费用),则要使公司获得最大利润,每套房月租金应定为________元. 10.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定,驾驶员在驾驶机动车时血液中酒精含量不得超过0.2 mg/mL.某人喝酒后,其血液中酒精含量将上升到3 mg/mL,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则至少经过________小时他才可以驾驶机动车.(精确到小时) 11.某人根据经验绘制了2018年春节前后,从12月21日至1月8日自己种植的西红柿的销售量y(千克)随时间x(天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________千克. 12.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则当z=81时,x=________,y=________. 三 、解答题13.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式y=f(t);(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间. 14.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现, 该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为:v=a+blog3(其中a,b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a,b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s,则其耗氧量至少要多少个单位? 15.已知某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元,设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R(x)万元,且R(x)=(1)写出年利润W(万元)关于年产量x(万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 16.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4,Q=a+120,设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?
答案解析1.答案为:C;解析:设死亡生物体内原有的碳14含量为1,则经过n(n∈N*)个“半衰期”后的含量为n,由n<得n≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C. 2.答案为:C;解析:由题意得即所以该食品在33 ℃的保鲜时间是y=e33k+b=(e11k)3·eb=3×192=24(小时). 3.答案为:D;解析:对于A选项,从图中可以看出当乙车的行驶速度大于40 km/h时的燃油效率大于5 km/L,故乙车消耗1升汽油的行驶路程可大于5千米,所以A错误.对于B选项,由图可知甲车消耗汽油最少.对于C选项,甲车以80 km/h的速度行驶时的燃油效率为10 km/L,故行驶1小时的路程为80千米,消耗8 L汽油,所以C错误.对于D选项,当最高限速为80 km/h且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D正确. 4.答案为:B;解析:设第n(n∈N*)年该公司全年投入的研发资金开始超过200万元.根据题意得130(1+12%)n-1>200,则lg [130(1+12%)n-1]>lg 200,∴lg 130+(n-1)·lg 1.12>lg 2+2,∴2+lg 1.3+(n-1)lg 1.12>lg 2+2,∴0.11+(n-1)×0.05>0.30,解得n>.又∵n∈N*,∴n≥5,∴该公司全年投入的研发资金开始超过200万元的年份是2019年.故选B. 5.答案为:C;解析:因为使用优惠券1比优惠券2减免的多,所以他购买的商品的标价超过200元.如果他购买的商品的标价为219元,那么使用优惠券1可以减免21.9元,使用优惠券2可以减免20元,使用优惠券3可以减免21.42元;如果标价为239元,那么使用优惠券1可以减免23.9元,使用优惠券2可以减免20元,使用优惠券3可以减免25.02元,不满足题意.故选C. 6.答案为:A;解析:因为前3年年产量的增长速度越来越快,可知图象的斜率随x的变大而变大,在图象上呈现下凹的情形;又因为后3年年产量的增长速度保持不变,可知图象的斜率不变,呈直线型变化.故选A. 7.答案为:C;解析:甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t2时刻全部卖出,此时获利20×2=40(万元),乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t4时刻全部卖出,此时获利40×2=80(万元),共获利40+80=120(万元).故选C. 8.答案为:D;解析:由题意知小王在0~20 min,30~60 min这两段时间运动的路程都在不断增加,在20~30 min时,运动的路程不变.故选D. 一 、填空题9.答案为:3300;解析:设利润为y元,租金定为3000+50x(0≤x≤70,x∈N)元.则y=(3000+50x)(70-x)-100(70-x)=(2900+50x)(70-x)=50(58+x)(70-x)≤502,当且仅当58+x=70-x,即x=6时,等号成立,故每月租金定为3000+300=3300(元)时,公司获得最大利润. 10.答案为:4;解析:设n小时后他才可以驾驶机动车,由题意得3(1-0.5)n≤0.2,即2n≥15,故至少经过4小时他才可以驾驶机动车. 11.答案为:;解析:前10天满足一次函数关系,设为y=kx+b,将点(1,10)和点(10,30)代入函数解析式得解得k=,b=,所以y=x+,则当x=6时,y=. 12.答案为:8,11;解析:把z=81代入方程组,化简得解得x=8,y=11. 二 、解答题13.解:(1)由题图,设y=当t=1时,由y=4得k=4,由=4得a=3.所以y=(2)由y≥0.25得或解得≤t≤5.因此服药一次后治疗疾病有效的时间是5-=(小时). 14.解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s,此时耗氧量为30个单位,则a+blog3=0,即a+b=0;当耗氧量为90个单位时,速度为1 m/s,则a+blog3=1,整理得a+2b=1.解方程组得(2)由(1)知,v=a+blog3=-1+log3.所以要使飞行速度不低于2 m/s,则v≥2,所以-1+log3≥2,即log3≥3,解得≥27,即Q≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s,则其耗氧量至少要270个单位. 15.解:(1)当0<x≤40时,W=xR(x)-(16x+40)=-6x2+384x-40,当x>40时,W=xR(x)-(16x+40)=--16x+8360.所以W=(2)①当0<x≤40时,W=-6(x-32)2+6104,所以Wmax=W(32)=6104;②当x>40时,W=--16x+8360,由于+16x≥2=1600;当且仅当=16x,即x=50时取等号,此时Wmax=-1600+8360=6760,综合①②知,当x=50时,W取得最大值6760万元. 16.解:(1)由题意知甲大棚投入50万元,则乙大棚投入150万元,∴f(50)=80+4+×150+120=277.5(万元).(2)f(x)=80+4+(200-x)+120=-x+4+250,依题意得⇒20≤x≤180,故f(x)=-x+4+250(20≤x≤180).令t=,则t∈[2,6],y=-t2+4t+250=-(t-8)2+282,当t=8,即x=128时,f(x)取得最大值,f(x)max=282.所以甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大总收益为282万元.
相关试卷
这是一份高考数学一轮复习考点测试刷题本48 双曲线(含答案解析),共8页。
这是一份高考数学一轮复习考点测试刷题本47 椭圆(含答案解析),共8页。
这是一份高考数学一轮复习考点测试刷题本46 圆与方程(含答案解析),共6页。