年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学一轮复习课时作业:12 函数模型及应用 Word版含解析

    高考数学一轮复习课时作业:12 函数模型及应用 Word版含解析第1页
    高考数学一轮复习课时作业:12 函数模型及应用 Word版含解析第2页
    高考数学一轮复习课时作业:12 函数模型及应用 Word版含解析第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习课时作业:12 函数模型及应用 Word版含解析

    展开

    这是一份高考数学一轮复习课时作业:12 函数模型及应用 Word版含解析,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    课时作业12函数模型及应用一、选择题1.下表显示出函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( A )x45678910y15171921232527A.一次函数模型   B.二次函数模型C.指数函数模型   D.对数函数模型解析:由表中数据知xy满足关系y132(x3).故为一次函数模型.2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:买一副球拍赠送一个羽毛球;按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( D )A.不能确定   B①②同样省钱C省钱   D省钱解析:方法用款为4×2026×580130210()方法用款为(4×2030×5)×92%211.6()因为210<211.6,故方法省钱.3.一个人以6 m/s的速度去追停在交通灯前的汽车,当他离汽车25 m时,交通灯由红变绿,汽车以1 m/s2的加速度匀加速开走,那么( D )A.人可在7 s内追上汽车B.人可在10 s内追上汽车C.人追不上汽车,其间距最少为5 mD.人追不上汽车,其间距最少为7 m解析:设汽车经过t秒行驶的路程为s米,则st2,车与人的间距d(s25)6tt26t25(t6)27,当t6时,d取得最小值为7.4.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( D )A.   B.C.   D.1解析:设第一年年初生产总值为1,则这两年的生产总值为(p1)(q1).设这两年生产总值的年平均增长率为x,则(1x)2(p1)(q1),解得x1.故选D.5.李冶(1192—1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( B )A10步,50   B20步,60C30步,70   D40步,80解析:设圆池的半径为r步,则方田的边长为(2r40)步,由题意,得(2r40)23r213.75×240,解得r10r=-170(),所以圆池的直径为20步,方田的边长为60步.故选B.6.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)M02,其中M0t0时铯137的含量.已知t30时,铯137含量的变化率是-10ln2(太贝克/),则M(60)( D )A5太贝克   B75ln 2太贝克C150ln 2太贝克   D150太贝克解析:由题意M(t)M02ln2M(30)M021×ln2=-10ln2M0600M(60)600×22150.故选D.二、填空题7.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是108元.解析:设进货价为a元,由题意知132×(110%)a10%·a,解得a108.8.某人根据经验绘制了2017年春节前后,从121日至28日自己种植的西红柿的销售量y(千克)随时间x()变化的函数图象,如图所示,则此人在126日大约卖出了西红柿千克.解析:10天满足一次函数关系,设为ykxb,将点(1,10)和点(10,30)代入函数解析式得解得kb,所以yx,则当x6时,y.9.已知某驾驶员喝了m升酒后,血液中酒精的含量f(x)(毫克/毫升)随时间x(小时)变化的规律近似满足表达式f(x)《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量应不超过0.02毫克/毫升.则此驾驶员至少要过4小时后才能开车.(精确到1小时)解析:驾驶员醉酒1小时血液中酒精含量为510.2,要使酒精含量0.02毫克/毫升,则x0.02xlog3301log310>1log393,故至少要4个小时后才能开车.三、解答题10某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x()之间的函数关系式可以近似地表示为y48x8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为(万元)4824832,当且仅当,即x200时取等号.所以年产量为200吨时,每吨产品的平均成本最低,为32万元.(2)设年获得总利润为R(x)万元,R(x)40xy40x48x8 000=-88x8 000=-(x220)21 680(0x210)因为R(x)[0,210]上是增函数,所以x210时,R(x)有最大值,为-(210220)21 6801 660.所以年产量为210吨时,可获得最大利润1 660万元.11某地近年来持续干旱,为倡导节约用水,该地采用了阶梯水价计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超过4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x()与支付费用y()的函数关系;(2)该地一家庭记录了去年12个月的月用水量(xN*)如下表:月用水量x()34567频数13332请你计算该家庭去年支付水费的月平均费用(精确到1)(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为节约用水家庭,随机抽取了该地100户的月用水量作出如下统计表: 月用水量x()1234567频数10201616151310据此估计该地节约用水家庭的比例.解:(1)y关于x的函数关系式为y(2)(1)知:当x3时,y6x4时,y8;当x5时,y12x6时,y16;当x7时,y22.所以该家庭去年支付水费的月平均费用为×(6×18×312×316×322×2)13()(3)(1)和题意知:当y12时,x5,所以节约用水家庭的频率为77%,据此估计该地节约用水家庭的比例为77%.12(2017·北京卷)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i1,2,3.Qi为第i名工人在这一天中加工的零件总数,则Q1Q2Q3中最大的是Q1pi为第i名工人在这一天中平均每小时加工的零件数,则p1p2p3中最大的是p2.解析:设线段AiBi的中点为Ci(xiyi),则Qi2yi(i1,2,3).因此只需比较C1C2C3三个点纵坐标的大小即可.不难发现y1最大,所以Q1最大.由题意,知pi(i1,2,3).故只需比较三条直线OC1OC2OC3的斜率即可,发现p2最大.13.牛奶保鲜时间因储藏时温度的不同而不同.假定保鲜时间y(单位:h)与储藏温度x(单位:)间的关系为指数型函数yk·ax(k0).若牛奶在0 的冰箱中,保鲜时间约是192 h,而在22 的厨房中,保鲜时间约是42 h.(1)写出保鲜时间y关于储藏温度x的函数解析式.(2)如果把牛奶分别储藏在10 5 的两台冰箱中,哪一台冰箱储藏牛奶保鲜时间较长?为什么?(参考数据:0.93)解:(1)保鲜时间y与储藏温度x间的关系符合指数型函数yk·ax(k0)解得故所求函数解析式为y192×0.93x.(2)f(x)192×0.93x,因为f(x)是减函数,且10>5,所以f(10)<f(5)所以把牛奶储藏在5 的冰箱中,牛奶保鲜时间较长.14我们定义函数y[x]([x]表示不大于x的最大整数)下整函数;定义y{x}({x}表示不小于x的最小整数)上整函数;例如[4.3]4[5]5{4.3}5{5}5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应付费为(单位:元)( C )A2[x1]   B2([x]1)C2{x}   D{2x}解析:x1时,应付费2元,此时2[x1]4,2([x]1)4,排除AB;当x0.5时,付费为2元,此时{2x}1,排除D,故选C.15.某地西红柿从21日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.QatbQat2btcQa·btQa·logbt.利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是120(2)最低种植成本是80(/100 kg)解析:根据表中数据可知函数不单调,所以Qat2btc,且开口向上,对称轴t=-120代入数据解得所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a120bc14 400×0.01120×(2.4)22480.   

    相关试卷

    高考数学一轮复习课时跟踪检测12 函数模型及其应用 含解析:

    这是一份高考数学一轮复习课时跟踪检测12 函数模型及其应用 含解析,共6页。试卷主要包含了某市出租车收费标准如下,某科研小组研究发现等内容,欢迎下载使用。

    高考数学(理数)一轮复习:课时达标检测12《函数模型及应用》(教师版):

    这是一份高考数学(理数)一轮复习:课时达标检测12《函数模型及应用》(教师版),共7页。

    高考数学(理数)一轮复习:课时达标检测12《函数模型及应用》(学生版):

    这是一份高考数学(理数)一轮复习:课时达标检测12《函数模型及应用》(学生版)

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map