|试卷下载
终身会员
搜索
    上传资料 赚现金
    高考数学二轮专题学与练 03 函数的应用(考点解读)(含解析)
    立即下载
    加入资料篮
    高考数学二轮专题学与练 03 函数的应用(考点解读)(含解析)01
    高考数学二轮专题学与练 03 函数的应用(考点解读)(含解析)02
    高考数学二轮专题学与练 03 函数的应用(考点解读)(含解析)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学二轮专题学与练 03 函数的应用(考点解读)(含解析)

    展开
    这是一份高考数学二轮专题学与练 03 函数的应用(考点解读)(含解析),共24页。

    专题3 函数的应用

    求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.

    知识点一 函数的零点与方程的根
    (1)函数的零点
    对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.
    (2)函数的零点与方程根的关系
    函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.
    (3)零点存在性定理
    如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0, 这个c也就是方程f(x)=0的根.
    注意以下两点:
    ①满足条件的零点可能不唯一;
    ②不满足条件时,也可能有零点.
    (4)二分法求函数零点的近似值,二分法求方程的近似解.
    知识点二 应用函数模型解决实际问题的一般程序
    ⇒⇒⇒
    与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.
    知识点三 数形结合
    在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数形结合是基本的解题方法,即把方程分拆为一个等式,使两端都转化为我们所熟悉的函数的解析式,然后构造两个函数f(x),g(x),即把方程写成f(x)=g(x)的形式,这时方程根的个数就是两个函数图象交点的个数,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系.

    高频考点一 函数的零点判断
    例1、(2018年全国I卷理数)已知函数 .若g(x)存在2个零点,则a的取值范围是
    A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
    【答案】C
    【解析】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

    【变式探究】【2017课标3,理11】已知函数有唯一零点,则a=
    A. B. C. D.1
    【答案】C
    【解析】函数的零点满足,
    设,则,
    当时,,当时,,函数 单调递减,
    当时,,函数 单调递增,
    当时,函数取得最小值,
    设 ,当时,函数取得最小值 ,

    【变式探究】(1)函数f(x)=ex+x-2的零点所在的区间是(  )
    A. B.
    C.(1,2) D.(2,3)
    (2)已知偶函数y=f(x),x∈R满足:f(x)=x2-3x(x≥0),若函数g(x)=则y=f(x)-g(x)的零点个数为(  )
    A.1 B.3 C.2 D.4
    【解析】(1)∵f′(x)=ex+>0,∴f(x)在R上单调递增,又f=-<-<0,f(1)=e->0,∴零点在区间上.
    (2)作出函数f(x)与g(x)的图象如图所示,易知两个函数图象有3个不同的交点,所以函数y=f(x)-g(x)有3个零点,故选B.

    【答案】(1)B (2)B
    【方法技巧】函数零点的求法
    (1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
    (2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
    (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其有几个交点,就有几个不同的零点.
    【变式探究】设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为(  )
    A.(0,1) B.(1,2) C.(2,3) D.(3,4)
    【答案】B 
    【解析】法一:∵f(1)=ln 1+1-2=-1<0,
    f(2)=ln 2>0,
    ∴f(1)·f(2)<0,
    ∵函数f(x)=ln x+x-2的图象是连续的,
    ∴函数f(x)的零点所在的区间是(1,2).
    法二:函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x+2图象交点的横坐标所在的范围,如图所示,可知f(x)的零点所在的区间为(1,2).

    高频考点二、二次函数的零点
    例2、(2018年浙江卷)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.
    【答案】 (1). (1,4) (2).
    【解析】由题意得或,所以或,即,不等式f(x)<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。
    【变式探究】已知函数f(x)=x2+ax+2,a∈R.
    (1)若不等式f(x)≤0的解集为[1,2],求不等式f(x)≥1-x2的解集;
    (2)若函数g(x)=f(x)+x2+1在区间(1,2)上有两个不同的零点,求实数a的取值范围.
    【解析】(1)因为不等式f(x)≤0的解集为[1,2],所以a=-3,于是f(x)=x2-3x+2.
    由f(x)≥1-x2得,1-x2≤x2-3x+2,解得x≤或x≥1,所以不等式f(x)≥1-x2的解集为
    (2)函数g(x)=2x2+ax+3在区间(1,2)上有两个不同的零点,则即解得-5 所以实数a的取值范围是(-5,-2).
    【方法技巧】解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.
    【变式探究】已知f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小,求实数a的取值范围.
    【解析】设方程x2+(a2-1)x+(a-2)=0的两根分别为x1,x2(x1 由根与系数的关系,得(a-2)+(a2-1)+1<0,
    即a2+a-2<0,∴-2 故实数a的取值范围为(-2,1).
    高频考点三 函数零点的应用
    例3、【2019年高考浙江】已知,函数.若函数恰有3个零点,则( )
    A.a<–1,b<0 B.a<–1,b>0
    C.a>–1,b<0 D.a>–1,b>0
    【答案】C
    【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x,
    则y=f(x)﹣ax﹣b最多有一个零点;
    当x≥0时,y=f(x)﹣ax﹣bx3(a+1)x2+ax﹣ax﹣bx3(a+1)x2﹣b,

    当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,
    则y=f(x)﹣ax﹣b最多有一个零点,不合题意;
    当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,
    令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.
    根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,
    如图:

    ∴0且,
    解得b<0,1﹣a>0,b(a+1)3,
    则a>–1,b<0.
    故选C.
    【举一反三】(2018年江苏卷)若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.
    【答案】–3
    【解析】由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以 ,
    【变式探究】【2017课标1,理21】已知函数.
    (1)讨论的单调性;
    (2)若有两个零点,求a的取值范围.
    【答案】(1)见解析;(2).
    【解析】(1)的定义域为, ,
    (ⅰ)若,则,所以在单调递减.
    (ⅱ)若,则由得.
    当时, ;当时, ,所以在单调递减,在单调递增.
    (2)(ⅰ)若,由(1)知, 至多有一个零点.
    (ⅱ)若,由(1)知,当时, 取得最小值,最小值为.
    ①当时,由于,故只有一个零点;
    ②当时,由于,即,故没有零点;
    ③当时, ,即.
    又,故在有一个零点.
    设正整数满足,则.
    由于,因此在有一个零点.
    综上, 的取值范围为.
    【方法规律】
    函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.
    【变式探究】
    (1))设函数f(x)=若函数g(x)=f(x)-b有三个零点,则实数b的取值范围是(  )
    A.(1,+∞)       B.
    C.{0}∪(1,+∞) D.(0,1]
    (2)若关于x的方程ex+ax-a=0没有实数根,则实数a的取值范围是(  )
    A.(-e2,0] B.[0,e2)
    C.(-e,0] D.[0,e)
    【解析】 (1)当x≤0时,f(x)=ex(x+1),则f′(x)=ex(x+1)+ex=ex(x+2),
    由f′(x)>0,得函数f(x)的单调递增区间为(-2,0],由f′(x)<0,得函数f(x)的单调递减区间为(-∞,-2),且易知x<-1时,f(x)<0,f(0)=1.由以上分析,可作出分段函数f(x)的图象,如图所示.要使函数g(x)=f(x)-b有三个零点,则方程f(x)-b=0,即f(x)=b有三个不同的实数根,也就是函数y=f(x)的图象与直线y=b有三个不同的公共点,结合图象可知,实数b的取值范围是(0,1],故选D.

    (2)由题意可知只需证ex+ax-a>0恒成立,即证ex>-a(x-1).
    当x<1时,-a>,令f(x)=,则f′(x)=<0,则f(x)单调递减,即有f(x)<0,解得-a≥0,即a≤0;
    当x=1时,e>0成立,a可以是任意实数;
    当x>1时,-a<,令f(x)=,则f′(x)=,当x∈(1,2)时,f′(x)<0,f(x)单调递减,当x∈(2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=2时,f(x)取得极小值,也是最小值e2,即有-a-e2.
    综上,实数a的取值范围是(-e2,0],故选A.
    【答案】 (1)D (2)A
    高频考点四、二次函数的模型
    例4、(1)(2019·高考全国卷Ⅱ)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:+=(R+r).设α=.由于α的值很小,因此在近似计算中≈3α3,则r的近似值为(  )
    A.R        B.R
    C.R D.R
    (2)(2019·高考北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=lg,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为(  )
    A. 1010.1 B. 10.1
    C. lg 10.1 D. 10-10.1
    【解析】 (1)由+=(R+r),得+=M1.因为α=,所以+=(1+α)M1,得=.由≈3α3,得3α3≈,即3≈,所以r≈·R,故选D.
    (2)根据题意,设太阳的星等与亮度分别为m1与E1,天狼星的星等与亮度分别为m2与E2,则由已知条件可知m1=-26.7,m2=-1.45,根据两颗星的星等与亮度满足m2-m1=lg ,把m1与m2的值分别代入上式得,-1.45-(-26.7)=lg,得lg =10.1,所以=1010.1,故选A.
    【答案】 (1)D (2)A
    【举一反三】(2018年天津卷)已知函数,,其中a>1.
    (I)求函数的单调区间;
    (II)若曲线在点处的切线与曲线在点 处的切线平行,证明;
    (III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.
    【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.
    【解析】(I)由已知,,有.
    令,解得x=0.
    由a>1,可知当x变化时,,的变化情况如下表:
    x

    0



    0
    +


    极小值

    所以函数的单调递减区间为,单调递增区间为.
    (II)由,可得曲线在点处的切线斜率为.
    由,可得曲线在点处的切线斜率为.
    因为这两条切线平行,故有,即.
    两边取以a为底的对数,得,所以.
    (III)曲线在点处的切线l1:.
    曲线在点处的切线l2:.
    要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,
    只需证明当时,存在,,使得l1和l2重合.
    即只需证明当时,方程组有解,
    由①得,代入②,得. ③
    因此,只需证明当时,关于x1的方程③存在实数解.
    设函数,
    即要证明当时,函数存在零点.
    ,可知时,;
    时,单调递减,
    又,,
    故存在唯一的x0,且x0>0,使得,即.
    由此可得在上单调递增,在上单调递减.
    在处取得极大值.
    因为,故,
    所以.
    下面证明存在实数t,使得.
    由(I)可得,
    当时,有

    所以存在实数t,使得
    因此,当时,存在,使得.
    所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.
    【变式探究】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:y=x2-200x+80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为100元.则该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
    【解析】设该单位每月获利为S,
    则S=100x-y
    =100x-
    =-x2+300x-80 000
    =-(x-300)2-35 000,
    因为400≤x≤600,
    所以当x=400时,S有最大值-40 000.
    故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.
    高频考点五、分段函数的模型
    例5、设函数则满足的x的取值范围是_________.
    【答案】

    写成分段函数的形式:,
    函数 在区间 三段区间内均单调递增,
    且: ,
    据此x的取值范围是: .
    【变式探究】已知一家公司生产某品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
    (1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
    (2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)
    【解析】(1)当0 W=xR(x)-(10+2.7x)=8.1x--10;
    当x>10时,W=xR(x)-(10+2.7x)=98--2.7x.
    ∴W=
    (2)①当00,当x∈(9,10]时,W′<0,
    ∴当x=9时,W取极大值,即最大值,
    且Wmax=8.1×9-×93-10=38.6.
    ②当x>10时,W=98-
    ≤98-2 =38,
    当且仅当=2.7x,即x=时,W=38,
    故当x=时,W取最大值38(当1 000x取整数时,W一定小于38).
    综合①②知,当x=9时,W取最大值,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.
    【方法技巧】
    (1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型.
    (2)求函数最值常利用基本(均值)不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.
    【变式探究】
    国庆期间,某旅行社组团去风景区旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.
    (1)写出飞机票的价格关于人数的函数;
    (2)每团人数为多少时,旅行社可获得最大利润?
    【解析】(1)设旅行团人数为x人,由题得0 则y=
    即y=
    (2)设旅行社获利S元,
    则S=
    即S=
    因为S=900x-15 000在区间(0,30]上为单调增函数,
    故当x=30时,S取最大值12 000元,
    又S=-10(x-60)2+21 000在区间(30,75]上,当x=60时,取得最大值21 000.
    故每团人数为60人时,旅行社可获得最大利润.

    1.【2019年高考浙江】已知,函数.若函数恰有3个零点,则( )
    A.a<–1,b<0 B.a<–1,b>0
    C.a>–1,b<0 D.a>–1,b>0
    【答案】C
    【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x,
    则y=f(x)﹣ax﹣b最多有一个零点;
    当x≥0时,y=f(x)﹣ax﹣bx3(a+1)x2+ax﹣ax﹣bx3(a+1)x2﹣b,

    当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,
    则y=f(x)﹣ax﹣b最多有一个零点,不合题意;
    当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,
    令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.
    根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,
    如图:

    ∴0且,
    解得b<0,1﹣a>0,b(a+1)3,
    则a>–1,b<0.
    故选C.
    2.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2−m1=,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为( )
    A.1010.1 B.10.1
    C.lg10.1 D.10−10.1
    【答案】A
    【解析】两颗星的星等与亮度满足,
    令,

    从而.
    故选A.
    3.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:.设,由于的值很小,因此在近似计算中,则r的近似值为( )
    A. B.
    C. D.
    【答案】D
    【解析】由,得,
    因为,
    所以,
    即,
    解得,
    所以
    故选D。
    1. (2018年全国I卷理数)已知函数 .若g(x)存在2个零点,则a的取值范围是
    A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
    【答案】C
    【解析】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

    2. (2018年浙江卷)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.
    【答案】 (1). (1,4) (2).
    【解析】由题意得或,所以或,即,不等式f(x)<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。
    3. (2018年江苏卷)若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.
    【答案】–3
    【解析】由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以 ,
    4. (2018年全国Ⅲ卷理数)函数在的零点个数为________.
    【答案】
    【解析】

    由题可知,或
    解得,或
    故有3个零点。
    5. (2018年天津卷)已知函数,,其中a>1.
    (I)求函数的单调区间;
    (II)若曲线在点处的切线与曲线在点 处的切线平行,证明;
    (III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.
    【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.
    【解析】(I)由已知,,有.
    令,解得x=0.
    由a>1,可知当x变化时,,的变化情况如下表:
    x

    0



    0
    +


    极小值

    所以函数的单调递减区间为,单调递增区间为.
    (II)由,可得曲线在点处的切线斜率为.
    由,可得曲线在点处的切线斜率为.
    因为这两条切线平行,故有,即.
    两边取以a为底的对数,得,所以.
    (III)曲线在点处的切线l1:.
    曲线在点处的切线l2:.
    要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,
    只需证明当时,存在,,使得l1和l2重合.
    即只需证明当时,方程组有解,
    由①得,代入②,得. ③
    因此,只需证明当时,关于x1的方程③存在实数解.
    设函数,
    即要证明当时,函数存在零点.
    ,可知时,;
    时,单调递减,
    又,,
    故存在唯一的x0,且x0>0,使得,即.
    由此可得在上单调递增,在上单调递减.
    在处取得极大值.
    因为,故,
    所以.
    下面证明存在实数t,使得.
    由(I)可得,
    当时,有,
    所以存在实数t,使得
    因此,当时,存在,使得.
    所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.
    1.【2017北京,理14】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的学科&网零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
    ①记Q1为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________.
    ②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.

    【答案】;
    【解析】作图可得中点的纵坐标比中点的纵坐标大,所以Q1,Q2,Q3中最大的是,
    分别作关于原点的对称点,比较直线的斜率(即为第i名工人在这一天中平均每小时加工的零件数),可得最大,所以p1,p2,p3中最大的是
    2.【2017课标3,理15】设函数则满足的x的取值范围是_________.
    【答案】

    写成分段函数的形式:,
    函数 在区间 三段区间内均单调递增,
    且: ,
    据此x的取值范围是: .
    3.【2017课标1,理21】已知函数.
    (1)讨论的单调性;
    (2)若有两个零点,求a的取值范围.
    【答案】(1)见解析;(2).
    【解析】(1)的定义域为, ,
    (ⅰ)若,则,所以在单调递减.
    (ⅱ)若,则由得.
    当时, ;当时, ,所以在单调递减,在单调递增.
    (2)(ⅰ)若,由(1)知, 至多有一个零点.
    (ⅱ)若,由(1)知,当时, 取得最小值,最小值为.
    ①当时,由于,故只有一个零点;
    ②当时,由于,即,故没有零点;
    ③当时, ,即.
    又,故在有一个零点.
    设正整数满足,则.
    由于,因此在有一个零点.
    综上, 的取值范围为.
    1.【2016高考山东理数】已知函数 其中,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________________.
    【答案】
    【解析】画出函数图象如下图所示:

    由图所示,要有三个不同的根,需要红色部分图像在深蓝色图像的下方,即,解得。
    2、【2016高考上海理数】已知点在函数的图像上,则.
    【答案】
    【解析】将点(3,9)代入函数中得,所以,用表示得,所以.
    3.【2016高考上海理数】已知,函数.
    (1)当时,解不等式;
    (2)若关于的方程的解集中恰好有一个元素,求的取值范围;
    (3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
    【答案】(1).(2).(3).
    【解析】
    (1)由,得,
    解得.
    (2),,
    当时,,经检验,满足题意.
    当时,,经检验,满足题意.
    当且时,,,.
    是原方程的解当且仅当,即;
    是原方程的解当且仅当,即.
    于是满足题意的.
    综上,的取值范围为.
    (3)当时,,,
    所以在上单调递减.
    函数在区间上的最大值与最小值分别为,.
    即,对任意
    成立.
    因为,所以函数在区间上单调递增,时,
    有最小值,由,得.
    故的取值范围为.
    4.【2016高考上海理数】设、、是定义域为的三个函数,对于命题:①若、、均为增函数,则、、中至少有一个增函数;②若、、均是以为周期的函数,则、、均是以为周期的函数,下列判断正确的是( )
    、①和②均为真命题 、①和②均为假命题
    、①为真命题,②为假命题 、①为假命题,②为真命题 学科.网
    【答案】D
    【解析】①不成立,可举反例
    , ,



    前两式作差,可得
    结合第三式,可得,
    也有
    ∴②正确
    故选D.

    相关试卷

    高考数学二轮专题学与练 17 概率与统计(考点解读)(含解析): 这是一份高考数学二轮专题学与练 17 概率与统计(考点解读)(含解析),共54页。试卷主要包含了回归分析,独立性检验,古典概型,对立事件,互斥事件与对立事件的关系等内容,欢迎下载使用。

    高考数学二轮专题学与练 14 直线与圆(考点解读)(含解析): 这是一份高考数学二轮专题学与练 14 直线与圆(考点解读)(含解析),共14页。试卷主要包含了直线方程,圆的方程,圆2+2=2的圆心和半径分别是等内容,欢迎下载使用。

    高考数学二轮专题学与练 10 数列求和及其应用(考点解读)(含解析): 这是一份高考数学二轮专题学与练 10 数列求和及其应用(考点解读)(含解析),共28页。试卷主要包含了数列求和的方法技巧,数列的综合问题,由a1=–7得d=2等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map