还剩20页未读,
继续阅读
20.2 数据的集中趋势 华师大版八年级数学下册导学课件
展开
这是一份20.2 数据的集中趋势 华师大版八年级数学下册导学课件,共28页。
20.2 数据的集中趋势第20章 数据的整理与初步处理逐点学练本节小结作业提升学习目标本节要点1学习流程2中位数众数平均数、中位数和众数的关系知识点感悟新知1中位数1. 定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数据为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.感悟新知2. 求中位数的方法(如图20.2-1):感悟新知特别解读●一组数据的中位数是唯一的,它可能是这组数据中的某个数据,也可能不是这组数据中的数据.●中位数是刻画一组数据的“中等水平”的一个代表,反映了一组数据的集中趋势.感悟新知[中考·杭州] 已知杭州市某天六个整点时的气温绘制成的统计图(如图20.2-2),则这六个整点时气温的中位数是________ .例 115.6℃感悟新知解题秘方:紧扣“中位数的定义”解答.解:把这些数据从小到大排列为4.5,10.5,15.3,15.9,19.6,20.1,∵这组数据有6 个,∴最中间的两个数的平均数是(15.3+15.9)÷2=15.6.∴这六个整点时气温的中位数是15.6℃ .感悟新知1-1.[中考·株洲] 某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67,63,69,55,65,则该组数据的中位数为( )A. 63 B. 65 C. 66 D. 69B知识点众数感悟新知21. 定义:一组数据中出现次数最多的数据称为这组数据的众数.特别提醒●一组数据的众数不一定唯一,可能有一个或几个,也可能没有.●众数是一组数据中出现次数最多的数据,而不是数据出现的次数.感悟新知说明:(1)一组数据的众数的大小只与这组数据中出现次数最多的数据有关,它一定出现在这组数据中;(2)众数是描述一组数据集中趋势的量,众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据.感悟新知2. 确定众数的方法:(1)排列:将数据按照大小顺序排列;(2)确定众数:先数出这组数据中各数据出现的次数, 再找出这组数据中出现次数最多的数据.在一组数据中,当出现次数最多的数据只有一个时,这个数据就是众数;当出现次数最多的数据不止一个时,这几个数据就是众数;当每个数据出现的次数相同时,这组数据没有众数.感悟新知下表是某学习小组一次数学测验的成绩(百分制)统计表:已知该小组本次数学测验的平均成绩是85 分,则测验成绩的众数是____________ .例280 分和90 分感悟新知解题秘方:紧扣“众数的定义”解答.方法点拨:众数是在一组数据中出现次数最多的数据,因此要确定众数,首先要找出各个数据出现的次数,再根据定义确定出现次数最多的数据.感悟新知解:由平均数的定义可列如下方程:70×1+80×3+90x+100×1=85(1+3+x+1),即410+90x=425+85x,解得x=3.从而可知这组数据中80 和90 出现的次数最多,都是3 次.故测验成绩的众数有两个,是80 分和90 分.感悟新知2-1.[ 中考· 湖州] 统计一名射击运动员在某次训练中10 次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10,这组数据的众数是( )A. 7 B. 8 C. 9 D. 10C感悟新知2-2. 如图是根据某班40名学生一周的体育锻炼情况绘制的条形统计图,那么该班40 名学生一周参加体育锻炼时间的众数是________ .8 h知识点平均数、中位数和众数的关系感悟新知3平均数、中位数和众数的联系与区别:感悟新知感悟新知特别提醒●平均数、中位数和众数从不同的角度反映数据的集中趋势,在实际应用中,需要根据具体情况选择适当的量来分析数据,避免仅从一个方面考虑,就轻易下结论.●特殊情况下,平均数、中位数和众数可能是同一个数据.感悟新知某中学篮球队有10 名队员,在一次投篮训练中,这10 名队员各投篮50 次的进球情况如下表:根据上面的信息,请解答下列问题:例 3感悟新知解题秘方:紧扣“平均数需计算,中位数、众数需排序查找”,并结合“三数”的特点进行解答.感悟新知(1)这10 名队员进球数的平均数为________,中位数为________ ,众数为________ ;(2)这支球队整体的投篮命中率为________ ;221915,1944%感悟新知(3)若队员小华的投篮命中率为40%,请你分析一下小华在这支球队中的投篮水平.解:虽然小华的投篮命中率为40%,低于整体投篮命中率44%,但小华投50 个球进了50×40%=20(个),大于中位数19 个,全队有6 人低于这个水平,所以小华在这支球队中的投篮水平属于中等以上.感悟新知3-1. 某工艺品厂共有16 名工人,调查每名工人的日均生产件数,获得如下数据:感悟新知(1)求这16 名工人日均生产件数的平均数、众数、中位数;感悟新知(2)若要使75% 的工人都能完成任务,应选什么统计量(平均数、众数、中位数)作为日生产件数的定额?解:若要使75%的工人都能完成任务,应选中位数或众数作为日生产件数的定额.本节小结数据的集中趋势中位数用排序法确定众数数据的集中趋势平均数用公式求请完成教材课后习题作业提升
20.2 数据的集中趋势第20章 数据的整理与初步处理逐点学练本节小结作业提升学习目标本节要点1学习流程2中位数众数平均数、中位数和众数的关系知识点感悟新知1中位数1. 定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数据为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.感悟新知2. 求中位数的方法(如图20.2-1):感悟新知特别解读●一组数据的中位数是唯一的,它可能是这组数据中的某个数据,也可能不是这组数据中的数据.●中位数是刻画一组数据的“中等水平”的一个代表,反映了一组数据的集中趋势.感悟新知[中考·杭州] 已知杭州市某天六个整点时的气温绘制成的统计图(如图20.2-2),则这六个整点时气温的中位数是________ .例 115.6℃感悟新知解题秘方:紧扣“中位数的定义”解答.解:把这些数据从小到大排列为4.5,10.5,15.3,15.9,19.6,20.1,∵这组数据有6 个,∴最中间的两个数的平均数是(15.3+15.9)÷2=15.6.∴这六个整点时气温的中位数是15.6℃ .感悟新知1-1.[中考·株洲] 某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67,63,69,55,65,则该组数据的中位数为( )A. 63 B. 65 C. 66 D. 69B知识点众数感悟新知21. 定义:一组数据中出现次数最多的数据称为这组数据的众数.特别提醒●一组数据的众数不一定唯一,可能有一个或几个,也可能没有.●众数是一组数据中出现次数最多的数据,而不是数据出现的次数.感悟新知说明:(1)一组数据的众数的大小只与这组数据中出现次数最多的数据有关,它一定出现在这组数据中;(2)众数是描述一组数据集中趋势的量,众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据.感悟新知2. 确定众数的方法:(1)排列:将数据按照大小顺序排列;(2)确定众数:先数出这组数据中各数据出现的次数, 再找出这组数据中出现次数最多的数据.在一组数据中,当出现次数最多的数据只有一个时,这个数据就是众数;当出现次数最多的数据不止一个时,这几个数据就是众数;当每个数据出现的次数相同时,这组数据没有众数.感悟新知下表是某学习小组一次数学测验的成绩(百分制)统计表:已知该小组本次数学测验的平均成绩是85 分,则测验成绩的众数是____________ .例280 分和90 分感悟新知解题秘方:紧扣“众数的定义”解答.方法点拨:众数是在一组数据中出现次数最多的数据,因此要确定众数,首先要找出各个数据出现的次数,再根据定义确定出现次数最多的数据.感悟新知解:由平均数的定义可列如下方程:70×1+80×3+90x+100×1=85(1+3+x+1),即410+90x=425+85x,解得x=3.从而可知这组数据中80 和90 出现的次数最多,都是3 次.故测验成绩的众数有两个,是80 分和90 分.感悟新知2-1.[ 中考· 湖州] 统计一名射击运动员在某次训练中10 次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10,这组数据的众数是( )A. 7 B. 8 C. 9 D. 10C感悟新知2-2. 如图是根据某班40名学生一周的体育锻炼情况绘制的条形统计图,那么该班40 名学生一周参加体育锻炼时间的众数是________ .8 h知识点平均数、中位数和众数的关系感悟新知3平均数、中位数和众数的联系与区别:感悟新知感悟新知特别提醒●平均数、中位数和众数从不同的角度反映数据的集中趋势,在实际应用中,需要根据具体情况选择适当的量来分析数据,避免仅从一个方面考虑,就轻易下结论.●特殊情况下,平均数、中位数和众数可能是同一个数据.感悟新知某中学篮球队有10 名队员,在一次投篮训练中,这10 名队员各投篮50 次的进球情况如下表:根据上面的信息,请解答下列问题:例 3感悟新知解题秘方:紧扣“平均数需计算,中位数、众数需排序查找”,并结合“三数”的特点进行解答.感悟新知(1)这10 名队员进球数的平均数为________,中位数为________ ,众数为________ ;(2)这支球队整体的投篮命中率为________ ;221915,1944%感悟新知(3)若队员小华的投篮命中率为40%,请你分析一下小华在这支球队中的投篮水平.解:虽然小华的投篮命中率为40%,低于整体投篮命中率44%,但小华投50 个球进了50×40%=20(个),大于中位数19 个,全队有6 人低于这个水平,所以小华在这支球队中的投篮水平属于中等以上.感悟新知3-1. 某工艺品厂共有16 名工人,调查每名工人的日均生产件数,获得如下数据:感悟新知(1)求这16 名工人日均生产件数的平均数、众数、中位数;感悟新知(2)若要使75% 的工人都能完成任务,应选什么统计量(平均数、众数、中位数)作为日生产件数的定额?解:若要使75%的工人都能完成任务,应选中位数或众数作为日生产件数的定额.本节小结数据的集中趋势中位数用排序法确定众数数据的集中趋势平均数用公式求请完成教材课后习题作业提升
相关资料
更多