所属成套资源:高一数学下学期期中期末复习(人教A版必修第二册)
专题14 随机抽样-高一数学下学期期中期末复习(人教A版必修第二册)
展开
这是一份专题14 随机抽样-高一数学下学期期中期末复习(人教A版必修第二册),文件包含专题14随机抽样解析版docx、专题14随机抽样原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
1.简单随机抽样的概念:一般地,从元素个数为N的总体中不放回地抽取容量为的样本,如果每一次抽取时总体中的各个个体被抽到的可能性是相同的,那么这种抽样方法叫简单随机抽样,这样抽取的样本,叫做简单随机样本.2.简单随机抽样的特点:(1)被抽取样本的总体个数N是有限的;(2)简单随机样本数n小于等于样本总体的个数N;(3)从总体中逐个进行抽取,使抽样便于在实践中操作;(4)它是不放回抽取,这使其具有广泛应用性;(5)每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.3.实施抽样的方法:(1)抽签法:抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力又不方便,若标号的纸片或小球搅拌得不均匀还可能导致抽样的不公平.抽签法的一般步骤:①将总体中的N个个体编号;②把这N个号码写在形状、大小相同的号签上;③将号签放在同一箱中,并搅拌均匀;④从箱中每次抽取一个号签,连续抽取n次;⑤将总体中与抽到的号签的编号一致的n个个体取出.(2)随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.随机数表法的步骤:① 将总体的个体编号(每个号码的位数一致);②在随机数表中任选一个数字作为开始;③从选定的数开始按一定的方向读下去,若得到的数码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止.注意:①选定开始数字,要保证所选数字的随机性;②确定读数方向获取样本号码时,读数方向可向左、向右、向上、向下,样本号码不能重复,否则舍去.4.分层抽样的概念:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.(1).分层抽样的特点:(1)适用于总体是由有明显差别的几部分组成时的情况;(2)分层抽样对各个个体来说被抽取的可能性相同.(2).分层抽样的优点:(1)样本具有较强的代表性;(2)在各层抽样时,可灵活地选用不同的抽样方法.(3).层抽样的步骤:(1)将总体按一定的标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(各层可以按简单随机抽样或系统抽样的方法抽取) 考点1 简单随机抽样的理解【例1】(多选).下面抽样方法不属于简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本 B.某饮料公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查 C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动 D.从10台手机中逐个不放回地随机抽取2台进行质量检验(假设10台手机已编号,对编号进行随机抽取) 变式训练【变1-1】.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A., B., C., D., 【变1-2】.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上记号,不影响其存活,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量. 考点2 抽签法与随机数法【例2】.从总体{1,3,8}中抽取一个容量为2的样本,所有可能的样本是 . 变式训练【变2-1】(多选).已知总体容量为106,若用随机数法抽取一个容量为10的样本,下面对总体的编号不正确的是( )A.1,2,…,106 B.01,…,105 C.00,01,…,105 D.000,001,…,105 【变2-2】.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为 考点3 用样本的平均数估计总体的平均数【例3】.某单位需要选派一名职工去参加市工会组织的自行车争先赛,该单位对甲、乙两名骑行爱好者进行了选拔测试,在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s),其数据如表所示:甲263729363430乙322837332735分别求出甲、乙两名骑行爱好者最大速度的数据的平均数、方差,并以此为依据判断选谁参加比赛比较合适. 变式训练【变3-1】.在某次测量中,甲工厂生产的某产品的A样本数据如下:43,50,45,55,60.若乙工厂生产的该产品的B样本数据恰好是由A样本数据中每个数都增加5后得到,据此,可以估计乙工厂生产的该产品的总体均值为( )A.55.6 B.50.6 C.53.6 D.55 【变3-2】.某单位开展“党员在线学习”活动,统计某党员7月份学习得分情况,下表是随机抽取该党员七天学习得分情况:日期7月2日7月6日7月13日7月15日7月16日7月19日7月21日得分35261520302517则所抽取的样本(七天学习得分)的均值为 ;据此,可以估计该党员7月份学习得分的均值为 . 考点4 分层抽样【例4】.某桔子园有平地和山地共120亩,现在要估计平均亩产量,按一定的比例用分层抽样的方法共抽取10亩进行调查,如果所抽山地是平地的2倍多1亩,则这个桔子园的平地与山地的亩数分别为( )A.45,75 B.40,80 C.36,84 D.30,90 变式训练【变4-1】.某高中在校学生2000人.为了响应“阳光体育运动”号召,学校举行了跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如表: 高一年级高二年级高三年级跑步abc登山xyz其中a:b:c=2:3:5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,现用分层抽样方式从中抽取一个100个人的样本进行调查,则高二级参与跑步的学生中应抽取( )A.6人 B.12人 C.18人 D.24人 【变4-2】.我国古代数学算经十书之一《九章算术》有一衰分问题(即分层抽样问题):今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人.凡三乡,发役五百人,则北乡遣 人. 考点5 分层抽样中的总体平均数和样本平均数【例5】.在了解全校学生每年平均阅读了多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5,方差为9;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6,方差为16.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本平均数与方差.(精确到0.1) 变式训练【变5-1】.分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为 .【变5-2】.某校为了解高一年学生的每周平均运动时间(单位:小时),采用样本量比例分配的分层随机抽样调查,所得样本数据如表:性别抽样人数样本平均数男2412女1610则总样本平均数是 . 1.一段高速公路有400个太阳能标志灯,其中进口的有40个,联合研制的有100个,国产的有260个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,则进口的标志灯抽取的数量为( )A.2 B.3 C.5 D.13 2.某工厂为了对产品质量进行严格把关,从500件产品中随机抽出50件进行检验,对这500件产品进行编号001,002,…,500,从下列随机数表的第二行第三组第一个数字开始,每次从左往右选取三个数字,则抽到第四件产品的编号为( )2839 3125 8395 9524 7232 89957216 2884 3660 1073 4366 75759436 6118 4479 5140 9694 95926017 4951 4068 7516 3241 4782A.447 B.366 C.140 D.118 3.已知某地A、B、C三个村的人口户数及贫困情况分别如图(1)和图(2)所示,为了解该地三个村的贫困原因,当地政府决定采用分层随机抽样的方法抽取15%的户数进行调查,则样本容量和抽取C村贫困户的户数分别是( )A.150,15 B.150,20 C.200,15 D.200,20 4.某中学有高中生1800人,初中生1200人,为了解学生课外锻炼情况,用分层抽样的方法从学生中抽取一个容量为n的样本.已知从高中生中抽取的人数比从初中生中抽取的人数多24,则n=( )A.48 B.72 C.60 D.120 5.现从700瓶水中抽取5瓶进行检验,利用随机数表抽取样本时,先将700瓶水编号,可以编为000,001,002,…,699,在随机数表中任选一个数,例如选出第8行第6列的数3.(下面摘取了附表1的第8行与第9 行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54规定从选定的数3开始向右读,得到的第5个样本的编号为( )A.719 B.556 C.512 D.050 6.某市四区夜市地摊的摊位数和食品摊位比例分别如图1、图2所示,为提升夜市消费品质,现用分层抽样的方法抽取6%的摊位进行调查分析,则抽取的样本容量与 A区被抽取的食品摊位数分别为( )A.210,24 B.210,27 C.252,24 D.252,27 7.高一某班级有男生30人,女生20人,用分层抽样的方法从中抽取10人,抽出的男生的平均高为175cm,抽出的女生的平均身高为165cm,则估计该班缓所有学生的平均身高为( )A.172cm B.171cm C.170cm D.169cm 8.某病毒实验室成功分离培养出贝塔病毒60株、德尔塔病毒20株、奥密克戎病毒40株,现要采用分层随机抽样的方法从中抽取一个容量为30的样本,则奥密克戎病毒应抽取( )A.10株 B.15株 C.20株 D.25株 9(多选).某运动队由足球运动员12人,篮球运动员18人,乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n的样本,若采用分层随机抽样的方法,且不用删除个体,则样本量n的取值不可能是( )A.24 B.20 C.6 D.5 10(多选).某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,如下提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到前4个编号中的是( )32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45A.328 B.457 C.253 D.007 11.某医院对某学校高三年级的600名学生进行身体健康调查,采用男女分层抽样法抽取一个容量为50的样本,已知男生比女生少抽了10人,则该年级的女生人数是 . 12.某公司生产甲、乙两种产品的数量之比为5:3,现用分层抽样的方法抽出一个样本,已知样本中甲种产品比乙种产品多6件,则甲种产品被抽取的件数为 . 13.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表第1行的第6列和第7列数字开始,由左到右依次选取两个数字作为所选球的编号,则选出来的第4个红色球的编号为 .49544354821737932328873520564384263491645724550688770474476721763350258392120676 14.目前,全国多数省份已经开始了新高考改革.改革后,考生的高考总成绩由语文、数学、外语3门全国统一考试科目成绩和3门选择性科目成绩组成.某校高三年级选择“物理、化学、生物”,“物理、化学、地理”和“历史、政治、地理”组合的学生人数分别是200,320,280.现采用分层抽样的方法从上述学生中选出40位学生进行调查,则从选择“物理、化学、生物”组合的学生中应抽取的人数是 . 15.某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率. 16.某机械厂三个车间共有工人1000名,各车间男、女工人数如表: 第一车间第二车间第三车间女工170120y男工180xz已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.13,其中第三车间的男女比例为3:2.(1)求x,y,z的值;(2)现用分层抽样的方法在全厂男工人中抽取55名工人进行技术比武,则在第三车间抽取多少名男工人? 17.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030可持续发展目标﹣﹣实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗埔中随机地抽测了200株树苗的高度(单位:cm),得到如图频率分布直方图.(1)求直方图中a的值及众数、中位数;(2)若树高185cm及以上是可以移栽的合格树苗,①求合格树苗的平均高度(结果精确到个位);②从样本中按分层抽样方法抽取20株树苗作进一步研究,不合格树苗、合格树苗分别应抽取多少株?
相关试卷
这是一份(人教A版必修第二册)高一数学下册同步讲义 专题09 随机抽样(课时训练)原卷版+解析,共24页。
这是一份专题19 统计与概率的综合问题-高一数学下学期期中期末复习(人教A版必修第二册),文件包含专题19统计与概率的综合问题解析版docx、专题19统计与概率的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份专题18 频率与概率-高一数学下学期期中期末复习(人教A版必修第二册),文件包含专题18频率与概率解析版docx、专题18频率与概率原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。