江西省赣州市章贡区第三中学2022-2023学年中考数学模拟试卷+
展开
这是一份江西省赣州市章贡区第三中学2022-2023学年中考数学模拟试卷+,共22页。试卷主要包含了下列各对数中,相等的一对数是,下列各数中,是不等式的解的是,若,则的值为等内容,欢迎下载使用。
江西省赣州市章贡区第三中学2022-2023年中考数学模拟试卷 考试时间:90分钟;考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数.且p≤q),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:S(n)=,例如18可以分解成1×18,2×9或3×6,则S(18)==,例如35可以分解成1×35,5×7,则S(35)=,则S(128)的值是( )A. B. C. D.2、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是( )A.47 B.62 C.79 D.983、若,,且a,b同号,则的值为( )A.4 B.-4 C.2或-2 D.4或-44、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )A. B.四边形EFGH是菱形C. D.5、下列各对数中,相等的一对数是( )A.与 B.与 C.与 D.与6、二次函数y=ax2+bx+c(a≠0)的图象如图所示,与x轴交于点(−1,0)和(x,0),且1<x<2,以下4个结论:①ab<0;②2a+b=0;③3a+c>0;④a+b<am2+bm(m<−1);其中正确的结论个数为( )A.4 B.3 C.2 D.17、对于反比例函数,下列结论错误的是( )A.函数图象分布在第一、三象限B.函数图象经过点(﹣3,﹣2)C.函数图象在每一象限内,y的值随x值的增大而减小D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y28、下列各数中,是不等式的解的是( )A.﹣7 B.﹣1 C.0 D.99、若,则的值为( )A. B.8 C. D.10、下列说法正确的是( )A.的系数是 B.的次数是5次C.的常数项为4 D.是三次三项式第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、近似数精确到____________位.2、如图,已知D是等边边AB上的一点,现将折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如果,则的值为______.3、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.4、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.5、一名男生推铅球,铅球行进的高度y(单位:米)与水平距离x(单位:米)之间的关系为,则这名男生这次推铅球的成绩是______米.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,已知AD平分∠BAC,E是边AB上的一点,AE=AC,F是边AC上的一点,联结DE、CE、FE,当EC平分∠DEF时,猜测EF、BC的位置关系,并说明理由.(完成以下说理过程)解:EF、BC的位置关系是______.说理如下:因为AD是∠BAC的角平分线(已知)所以∠1=∠2.在△AED和△ACD中,,所以△AED≌△ACD(SAS).得__________(全等三角形的对应边相等).2、已知的立方根是-3,的算术平方根是4,c是的整数部分,求的平方根.3、计算(1)(2)4、我们定义:如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.(1)请说明方程是倍根方程;(2)若是倍根方程,则,具有怎样的关系?(3)若一元二次方程是倍根方程,则,,的等量关系是____________(直接写出结果)5、给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x-1的特征系数对为________;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,-4,4)的特征多项式的乘积;(3)若有序实数对(p,q,-1)的特征多项式与有序实数对(m,n,-2)的特征多项式的乘积的结果为2x4+x3-10x2-x+2,直接写出(4p-2q-1)(2m-n-1)的值为________. -参考答案-一、单选题1、A【分析】由128=1×128=2×64=4×32=8×16结合最佳分解的定义即可知F(128)=.【详解】解:∵128=1×128=2×64=4×32=8×16,∴F(128)=,故选:A.【点睛】本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.2、A【分析】根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.【详解】解:根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,∴第6个图中黑点的个数是 .故选:A【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.3、D【分析】根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.【详解】解:∵|a|=3,|b|=1,∴a=±3,b=±1,∵a,b同号,∴当a=3,b=1时,a+b=4;当a=-3,b=-1时,a+b=-4;故选:D.【点睛】本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.4、C【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF,∴四边形EFGH是菱形,故B正确,不符合题意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正确,不符合题意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.5、C【分析】先化简,再比较即可.【详解】A. ∵=1,=-1,∴≠,故不符合题意;B. ∵=-1,=1,∴≠,故不符合题意;C. ∵=-1,=-1,∴=,故符合题意;D. ∵=,=,∴≠,故不符合题意;故选C.【点睛】本题考查了有理数的乘方,绝对值,有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.正确化简各数是解答本题的关键.6、B【分析】由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x=-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.【详解】解:由图象可知,a>0,b<0,∴ab<0,①正确;因与x轴交于点(−1,0)和(x,0),且1<x<2,所以对称轴为直线−<1,∴−b<2a,∴2a+b>0,②错误;由图象可知x=−1,y=a−b+c=0,又2a>−b,2a+a+c>−b+a+c,∴3a+c>0,③正确;由增减性可知m<−1,am2+bm+c>0,当x=1时,a+b+c<0,即a+b<am2+bm,④正确.综上,正确的有①③④,共3个,故选:B.【点睛】本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键.7、D【分析】根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.【详解】解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;D、∵不能确定x1和x2大于或小于0∴不能确定y1、y2的大小,故错误;故选:D.【点睛】本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8、D【分析】移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.【详解】解:移项得:,∴9为不等式的解,故选D.【点睛】本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.9、D【分析】根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.【详解】解:,,,,,,解得:,,.故选:D.【点睛】本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.10、A【分析】根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.【详解】解:A、的系数是,故选项正确;B、的次数是3次,故选项错误;C、的常数项为-4,故选项错误;D、是二次三项式,故选项错误;故选A.【点睛】本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键.二、填空题1、百【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.【详解】解:∵104是1万,6位万位,0为千位,5为百位,∴近似数6.05×104精确到百位;故答案为百.【点睛】此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.2、7:8【分析】设AD=2x,DB=3x,连接DE、DF,由折叠的性质及等边三角形的性质可得△ADE∽△BFD,由相似三角形的性质即可求得CE:CF的值.【详解】设AD=2x,DB=3x,则AB=5x连接DE、DF,如图所示 ∵△ABC是等边三角形∴BC=AC=AB=5x,∠A=∠B=∠ACB=60° 由折叠的性质得:DE=CE,DF=CF,∠EDF=∠ACB=60°∴∠ADE+∠BDF=180°−∠EDF=120°∵∠BDF+∠DFB=180°−∠B=120°∴∠ADE=∠DFB∴△ADE∽△BFD∴即CE:CF=7:8故答案为:7:8【点睛】本题考查了等边三角形的性质,折叠的性质,相似三角形的判定与性质等知识,证明三角形相似是本题的关键.3、3【分析】用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案【详解】用“”表示正面朝上,用“”表示正面朝下,开始时第一次第二次第三次至少翻转3次能使所有硬币都反面朝上.故答案为:3【点睛】本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键.4、##【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,①,②,解得: 又丙品种水果增加的产量占今年水果总产量的, 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.5、10【分析】将代入解析式求的值即可.【详解】解:∵∴ 解得:(舍去),故答案为:10.【点睛】本题考查了二次函数的应用.解题的关键在于正确的解一元二次方程.所求值要满足实际.三、解答题1、EF∥BC,DE=DC.【分析】先利用△AED≌△ACD得到∠3=∠4,利用角的平分线,转化为一对相等的内错角,继而判定直线的平行.【详解】解:EF、BC的位置关系是EF∥BC.理由如下:如图,∵AD是∠BAC的角平分线(已知)∴∠1=∠2.在△AED和△ACD中,,∴△AED≌△ACD(SAS).∴DE=DC(全等三角形的对应边相等),∴∠3=∠4.∵EC平分∠DEF(已知),∴∠3=∠5.∴∠4=∠5.所以EF∥BC(内错角相等,两直线平行).故答案为:EF∥BC,∠1=∠2,AD=AD,DE=DC.【点睛】本题考查了三角形的全等和性质,角的平分线即从角的顶点出发的射线把这个角分成相等的两个角,等腰三角形的性质,平行线的判定,熟练掌握灯光要三角形的性质,平行线的判定是解题的关键.2、±4【分析】根据的立方根是-3,可求得a的值;根据的算术平方根是4及已经求得的a的值,可求得b的值;再由c是的整数部分可求得c的值,则可求得的值,从而求得结果.【详解】∵的立方根是-3∴∴∵的算术平方根是4∴即∴∵c是的整数部分,且∴∴∵∴的平方根为±4【点睛】本题考查了平方根、算术平方根、立方根等概念,熟练掌握这些定义是关键.3、(1)7;(2).【分析】(1)先计算乘方,再计算乘除,去括号,再计算加减即可;(2)先变带分数为假分数,把除变乘,利用乘法分配律简算,再计算加法即可.(1)解:,=,=,=,=7;(2)解:,=,=,=,=,=.【点睛】本题考查含乘方的有理数混合运算,掌握运算法则,先乘方,再乘除,最后加减,有括号先算小括号,中括号,再大括号,能简算的可简算.4、(1)见解析(2),或(3)【分析】(1)因式分解法解一元二次方程,进而根据定义进行判断即可;(2)因式分解法解一元二次方程,进而根据定义得其中一个根是另一个根的2倍,即可求解;(3)公式法解一元二次方程,进而根据定义得其中一个根是另一个根的2倍,即可求解.(1)是倍根方程,理由如下:解方程,得,,∵2是1的2倍,∴一元二次方程是倍根方程;(2)是倍根方程,且,,或,∴,或(3)解:是倍根方程,,或即或或即或故答案为:【点睛】本题考查了倍根方程的定义,解一元二次方程,掌握解一元二次方程的方法是解题的关键.5、(1)(3,2,-1)(2)(3)-6【分析】(1)根据特征系数对的定义即可解答;(2)根据特征多项式的定义先写出多项式,然后再根据多项式乘多项式进行计算即可;(3)根据特征多项式的定义先写出多项式,然后再令x=-2即可得出答案.(1)解:关于x的二次多项式3x2+2x-1的特征系数对为 (3,2,-1),故答案为:(3,2,-1);(2)解:∵有序实数对(1,4,4)的特征多项式为:x2+4x+4,有序实数对(1,-4,4)的特征多项式为:x2-4x+4,∴(x2+4x+4)(x2-4x+4)=x4-4x3+4x2+4x3-16x2+16x+4x2-16x+16=x4-8x2+16;(3)解:根据题意得(px2+qx-1)(mx2+nx-2)=2x4+x3-10x2-x+2,令x=-2,则(4p-2q-1)(4m-2n-2)=2×16-8-10×4+2+2,∴(4p-2q-1)(4m-2n-2)=32-8-40+2+2,∴(4p-2q-1)(4m-2n-2)=-12,∴(4p-2q-1)(2m-n-1)=-6,故答案为:-6.【点睛】本题考查了多项式乘多项式,新定义问题,给x赋予特殊值-2是解题的关键.
相关试卷
这是一份2022-2023学年江西省赣州市章贡区九年级(下)期中数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份江西省赣州市章贡区2022-2023学年九年级下学期期中数学试卷,共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年江西省赣州市章贡区八年级(上)期中数学试卷