![真题重组卷03-2023年中考数学真题汇编重组卷(广东广州专用)(原卷版)第1页](http://m.enxinlong.com/img-preview/2/3/14291936/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题重组卷03-2023年中考数学真题汇编重组卷(广东广州专用)(原卷版)第2页](http://m.enxinlong.com/img-preview/2/3/14291936/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题重组卷03-2023年中考数学真题汇编重组卷(广东广州专用)(原卷版)第3页](http://m.enxinlong.com/img-preview/2/3/14291936/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题重组卷03-2023年中考数学真题汇编重组卷(广东广州专用)(解析版)第1页](http://m.enxinlong.com/img-preview/2/3/14291936/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题重组卷03-2023年中考数学真题汇编重组卷(广东广州专用)(解析版)第2页](http://m.enxinlong.com/img-preview/2/3/14291936/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题重组卷03-2023年中考数学真题汇编重组卷(广东广州专用)(解析版)第3页](http://m.enxinlong.com/img-preview/2/3/14291936/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考数学真题汇编重组卷(广东专用)
真题重组卷03——2023年中考数学真题汇编重组卷(广东广州专用)
展开
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东广州专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷广东广州专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷广东广州专用原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
绝密★启用前
冲刺2023年中考数学精选真题重组卷03
数 学(广州专用)
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.(2018·广东广州·中考真题)四个数0,1,中,无理数的是( )
A. B.1 C. D.0
【答案】A
【分析】分别根据无理数、有理数的定义即可判定选择项.
【详解】0,1,是有理数,是无理数,
故选A.
【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
2.(2020·广东广州·统考中考真题)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )
A.套餐一 B.套餐二 C.套餐三 D.套餐四
【答案】A
【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.
【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;
故选:A.
【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.
3.(2017·广东广州·中考真题)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( )
A. B. C. D.
【答案】A
【详解】试题分析:顺时针90°后,AD转到AB边上,所以,选A.
考点:旋转的特征
4.(2022·青海·统考中考真题)下列运算正确的是( )
A. B.
C. D.
【答案】D
【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.
【详解】A.选项,3x2与4x3不是同类项,不能合并,故该选项计算错误,不符合题意;
B.选项,原式= ,故该选项计算错误,不符合题意;
C.选项,原式= ,故该选项计算错误,不符合题意;
D.选项,原式=,故该选项计算正确,符合题意;
故选:D.
【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.
5.(2022·广西河池·统考中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )
A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC
【答案】C
【分析】根据菱形的性质逐项分析判断即可求解.
【详解】解:∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,∠DAC=∠BAC,故A、B、D选项正确,
不能得出,故C选项不正确,
故选:C.
【点睛】本题考查了菱形的性质,掌握菱形的性质是解题的关键.
6.(2022·内蒙古通辽·统考中考真题)若关于的分式方程:的解为正数,则的取值范围为( )
A. B.且
C. D.且
【答案】B
【分析】先解方程,含有k的代数式表示x,在根据x的取值范围确定k的取值范围.
【详解】解:∵,
∴,
解得:,
∵解为正数,
∴,
∴,
∵分母不能为0,
∴,
∴,解得,
综上所述:且,
故选:B.
【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.
7.(2022·广西河池·统考中考真题)如图,在Rt△ABC中,,,,将绕点B顺时针旋转90°得到.在此旋转过程中所扫过的面积为( )
A.25π+24 B.5π+24 C.25π D.5π
【答案】A
【分析】根据勾股定理定理求出AB,然后根据扇形的面积和三角形的面积公式求解.
【详解】解:∵,,,
∴,
∴所扫过的面积为.
故选:A.
【点睛】本题主要考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答的关键.
8.(2020·广东广州·统考中考真题)如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为( )
A. B. C. D.
【答案】C
【分析】根据勾股定理求出AC=BD=10,由矩形的性质得出AO=5,证明得到OE的长,再证明可得到EF的长,从而可得到结论.
【详解】∵四边形ABCD是矩形,
,
,
,
,,
,
,
,
又,
,
,
,
,,
,
同理可证,,
,
,
,
,
故选:C.
【点睛】本题主要考查了矩形的性质和相似三角形的判定与性质,熟练掌握判定与性质是解答此题的关键.
9.(2022·山东聊城·统考中考真题)如图,AB,CD是的弦,延长AB,CD相交于点P.已知,,则的度数是( )
A.30° B.25° C.20° D.10°
【答案】C
【分析】如图,连接OB,OD,AC,先求解,再求解,从而可得,再利用周角的含义可得,从而可得答案.
【详解】解:如图,连接OB,OD,AC,
∵,
∴,
∵,
∴,
∵,,
∴,,
∴,
∴,
∴.
∴的度数20°.
故选:C.
【点睛】本题考查的是圆心角与弧的度数的关系,等腰三角形的性质,三角形的内角和定理的应用,掌握“圆心角与弧的度数的关系”是解本题的关键.
10.(2022·内蒙古通辽·统考中考真题)如图,点是内一点,与轴平行,与轴平行,,,,若反比例函数的图像经过,两点,则的值是( )
A. B. C. D.
【答案】C
【分析】过点C作CE⊥y轴于点E,延长BD交CE于点F,可证明△COE≌△ABE(AAS),则OE=BD=;由S△BDC=•BD•CF=可得CF=9,由∠BDC=120°,可知∠CDF=60°,所以DF=3,所以点D的纵坐标为4;设C(m,),D(m+9,4),则k=m=4(m+9),求出m的值即可求出k的值.
【详解】解:过点C作CE⊥y轴于点E,延长BD交CE于点F,
∵四边形OABC为平行四边形,
∴ABOC,AB=OC,
∴∠COE=∠ABD,
∵BDy轴,
∴∠ADB=90°,
∴△COE≌△ABD(AAS),
∴OE=BD=,
∵S△BDC=•BD•CF=,
∴CF=9,
∵∠BDC=120°,
∴∠CDF=60°,
∴DF=3.
∴点D的纵坐标为4,
设C(m,),D(m+9,4),
∵反比例函数y=(x<0)的图像经过C、D两点,
∴k=m=4(m+9),
∴m=-12,
∴k=-12.
故选:C.
【点睛】本题主要考查反比例函数与几何的综合问题,坐标与图形,全等三角形的判定与性质,设出关键点的坐标,并根据几何关系消去参数的值是本题解题关键.
二、 填空题(本大题共6小题,每小题4分,共24分)
11.(2020·广东广州·统考中考真题)计算:__________.
【答案】
【分析】先化简二次根式,再进行合并即可求出答案.
【详解】,
故答案为:.
【点睛】本题考查了二次根式的加减,关键是二次根式的化简,再进行合并.
12.(2017·广东广州·中考真题)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=______.
【答案】.
【详解】扇形的弧长和圆锥的底面周长相等,即:,解得:l=
考点: 圆锥的底面周长与侧面展开图的弧长关系.
13.(2018·广东广州·中考真题)方程的解是_____.
【答案】x=2.
【分析】本题考查解分式方程的能力,观察可得最简公分母是x(x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.
【详解】方程两边同乘以x(x+6),
得x+6=4x,
解得x=2.
经检验:x=2是原方程的解.
【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.
14.(2022·青海·统考中考真题)如图,在RtABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为_____________°.
【答案】40°
【分析】根据直角三角形的性质求得∠AEB=80°;根据线段垂直平分线的性质得AE=CE,则∠C=∠EAC,再根据三角形的外角的性质即可求解.
【详解】解:∵∠B=90°,∠BAE=10°,
∴∠BEA=80°.
∵ED是AC的垂直平分线,
∴AE=EC,
∴∠C=∠EAC.
∵∠BEA=∠C+∠EAC,
∴∠C=40°.
故答案为:40°.
【点睛】此题考查了线段垂直平分线的性质,涉及到三角形的外角的性质以及等腰三角形的性质的知识,难度适中.
15.(2022·广西河池·统考中考真题)如图,点P(x,y)在双曲线的图象上,PA⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为 _____.
【答案】
【分析】根据反比例函数比例系数的几何意义,即可求解.
【详解】解:根据题意得:,
∴,
∵图象位于第二象限内,
∴,
∴该反比例函数的解析式为.
故答案为:
【点睛】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.
16.(2018·广东广州·中考真题)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四边形AFOE:S△COD=2:3.
其中正确的结论有_____.(填写所有正确结论的序号)
【答案】①②④.
【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.
【详解】∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴=,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四边形ACBE是平行四边形,
∵AB⊥EC,
∴四边形ACBE是菱形,故①正确,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正确,
∵OA∥CD,
∴,
∴,故③错误,
设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=3a,
∴四边形AFOE的面积为4a,△ODC的面积为6a
∴S四边形AFOE:S△COD=2:3.故④正确.
故答案是:①②④.
【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.
三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)
17.(2017·广东广州·中考真题)解方程组:
【答案】.
【详解】试题分析:用加减消元法进行求解即可.
试题解析: ,
①×3,得:=15③,
③-②,得x=4,
把x=4代入①,得,4+y=5,∴y=1,
∴.
18.(2020·广东广州·统考中考真题)已知反比例函数的图象分别位于第二、第四象限,化简:.
【答案】5
【分析】由反比例函数图象的性质可得k
相关试卷
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(福建专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷福建专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷福建专用原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东深圳专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷深圳专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷深圳专用原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷广东专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷广东专用原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。