所属成套资源:华师大版数学八年级下册 期末复习卷(含答案)
华师大版数学八年级下册《平行四边形》期末复习卷(含答案)
展开这是一份华师大版数学八年级下册《平行四边形》期末复习卷(含答案),共11页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
华师大版数学八年级下册
《平行四边形》期末复习卷
一 、选择题
1.如图,在▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( )
A.16° B.22° C.32° D.68°
2.如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(2,0),(0.5,1),则点B坐标是( )
A.(1,2) B.(0.5,2) C.(2.5,1) D.(2,0.5)
3.如图,在▱ABCD中,连结AC,∠B=∠CAD=45°,AB=2,则BC的长是 ( )
A. B.2 C.2 D.4
4.如图,已知在▱ABCD中,AB=6,BC=4,若∠B=45°,则▱ABCD的面积为( )
A.8 B.12 C.16 D.24
5.如图,EF过▱ABCD对角线的交点O,交AD于点E,交BC于点F,若▱ABCD的周长为36,OE=3,则四边形EFCD的周长为( )
A.28 B.26 C.24 D.20
6.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )
A.8 B.10 C.12 D.14
7.下列条件中,不能判定四边形是平行四边形的是( )
A.两组对边分别平行 B.一组对边平行,另一组对边相等
C.两组对边分别相等 D.一组对边平行且相等
8.如图,在△ABC中,D,E分别是AB、BC的中点,点F在DE延长线上.添加一个条件使四边形ADFC为平行四边形,则这个条件是( )
A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF
9.如图,▱ABCD中,AD>AB,△ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图中的甲、乙、丙三种方案,则正确的方案( )
A.甲、乙、丙都是 B.只有甲、乙才是
C.只有甲、丙才是 D.只有乙、丙才是
10.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为( )
A.3 B.4 C.6 D.8
11.在平面直角坐标系中,已知平行四边形ABCD的点A(0,-2)、点B(3m,4m+1)(m≠-1),点C(6,2),则对角线BD的最小值是( )
A.3 B.2 C.5 D.6
12.如图,平行四边形ABCD中,P是形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1,S2,S3,S4,则一定成立的是( )
A.S1+S2=S3+S4 B.S1+S2>S3+S4 C.S1+S3=S2+S4 D.S1+S2<S3+S4
二 、填空题
13.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件 ,使四边形AECF是平行四边形(只填一个即可).
14.将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD为平行四边形,理由是________________.
15.已知平行四边形ABCD中,∠B=5∠A,则∠D= .
16.如图,点E在▱ABCD的边BC上,BE=CD.若∠EAC=20°,∠B+∠D=80°,则∠ACD的度数为 .
17.如图,在平行四边形ABCD中,EF//AD,HN//AB,则图中的平行四边形共有 个.
18.如图,在Rt△ABC中,∠BAC=90°,∠ACB=45°,AB=2,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为 .
三 、作图题
19.如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,求CE.
四 、解答题
20.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.
(1)若∠F=40°,求∠A的度数;
(2)若AB=10,BC=16,CE⊥AD,求▱ABCD的面积.
21.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四边形ABCD的周长.
22.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
23.如图,已知△ABC,分别以它的三边为边长,在BC边的同侧作三个等边三角形,即△ABD,△BCE,△ACF,求证:四边形ADEF是平行四边形.
24.如图在四边形ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,
(1)如果AD∥BC,AD=BC.观察猜想DF与BE之间的关系,并证明你的猜想;
(2)如果AB=7,BE=4.求线段BO的取值范围.
25.如图,M、N是平行四边形ABCD对角线BD上两点.
(1)若BM=MN=DN,求证:四边形AMCN为平行四边形;
(2)若M、N为对角线BD上的动点(均可与端点重合),设BD=12cm,点M由点B向点D匀速运动,速度为2(cm/s),同时点N由点D向点B匀速运动,速度为a(cm/s),运动时间为t(s).若要使四边形AMCN为平行四边形,求a的值及t的取值范围.
答案
1.C
2.C.
3.C
4.B
5.C.
6.B.
7.B
8.B.
9.A
10.D.
11.D.
12.C
13.答案为:AF=CE.
14.答案为:对角线互相平分的四边形是平行四边形.
15.答案为:150°.
16.答案为:90°.
17.答案为:9
18.答案为:2.
19.解:(1)如答图所示,E点即为所求;
(2)∵四边形ABCD是平行四边形,
∴AB=CD=5,AD∥BC,
∴∠DAE=∠AEB,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
∴∠BAE=∠BEA,
∴BE=BA=5,
∴CE=BC-BE=3.
20.解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠AEB=∠CBF,∠ABE=∠F=40°,
∵∠ABC的平分线交AD于点E,
∴∠ABE=∠CBF,
∴∠AEB=∠ABE=40°,
∴∠A=180°﹣40°﹣40°=100°
(2)∵∠AEB=∠ABE
∴AE=AB=10
∵四边形ABCD是平行四边形
∴AD=BC=16,CD=AB=10,
∴DE=AD﹣AE=6,
∵CE⊥AD,
∴CE=8,
∴▱ABCD的面积=AD•CE=16×8=128
21.解:在平行四边形ABCD中,
∵AB∥CD,∴∠ABC+∠BCD=180°,
∵∠ABE=∠EBC,∠BCE=∠ECD.,
∴∠EBC+∠BCE=90°,
∴∠BEC=90°,
∴BC2=BE2+CE2=122+52=132
∴BC=13cm,
∵AD∥BC,
∴∠AEB=∠EBC,
∴∠AEB=∠ABE,
∴AB=AE,
同理CD=ED,∵AB=CD,
∴AB=AE=CD=ED=0.5BC=6.5cm,
∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm
22.证明:(1)∵四边形ABCD是平行四边形,
∴AB∥DF,
∴∠ABE=∠FCE,
∵E为BC中点,
∴BE=CE,
在△ABE与△FCE中,
,
∴△ABE≌△FCE(ASA),
∴AB=CF;
(2)∵AD=2AB,AB=FC=CD,
∴AD=DF,
∵△ABE≌△FCE,
∴AE=EF,
∴DE⊥AF.
23.解:∵△ABD,△BEC都是等边三角形,
∴BD=AB,BE=BC,∠DBA=∠EBC=60°,
∴∠DBE=60°﹣∠EBA,∠ABC=60°﹣∠EBA,
∴∠DBE=∠ABC,
在△DBE和△ABC中,BD=AB ;∠DBE=∠ABC;BE=BC
∴△DBE≌△ABC(SAS),
∴DE=AC,
又∵△ACF是等边三角形,
∴AC=AF,
∴DE=AF.
同理可得:△ABC≌△FEC,
∴EF=AB=DA.
∵DE=AF,DA=EF,
∴四边形ADEF为平行四边形.
24.解:(1)猜想:平行且相等
∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,
∴BO=DO,AO=CO,
∵点E、点F分别是OA、OC的中点,
∴OE=OF,
∵在△DOF和△BOE中,
DO=BO,∠BOE=∠DOF,OF=OE,
∴△DOF≌△BOE(SAS),
∴DF=BE,∠FDO=∠EBO,
∴DF∥BE,
即DF与BE之间的关系为平行且相等;
(2)在△ABE中,∵AB=7,BE=4,
∴3<AE<11,
∵AO<AB,
∴6<2AE=AO<7,
∴6<AO<7,
在△ABO中,
1<OB<13,
在△BEO中,OB<4,即1<OB<4.
25.(1)证明:连接AC,交BD于点O,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵BM=DN,
∴OB﹣BM=OD﹣DN,
∴OM=ON,
∴四边形AMCN为平行四边形;
(2)解:要使四边形AMCN为平行四边形,即OM=ON,∴a=2;
∵当M、M重合于点O,即t===3时,则点A、M、C、N在同一直线上,不能组成四边形,且当点M由B运动到点D时,t=12÷2=6,
∴当0≤t<3或3<t≤6时,四边形AMCN为平行四边形.
相关试卷
这是一份青岛版数学八年级下册《平行四边形》期末复习卷(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份华师大版数学八年级下册《数据的整理与初步处理》期末复习卷(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份华师大版数学八年级下册《矩形、菱形与正方形》期末复习卷(含答案),共13页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。