所属成套资源:中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习(含答案)
中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习11(含答案)
展开
这是一份中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习11(含答案),共8页。试卷主要包含了1 m;参考数据,414, =1,7,,3m等内容,欢迎下载使用。
中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习111.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=30°,∠ABD=45°,BC=50 m.请你帮小明计算他家到公路l的距离AD的长度.(精确到0.1 m;参考数据:≈1.414,≈1.732). 2.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据: =1.414, =1.732) 3.如图,在一个坡角为30°的斜坡上有一电线杆AB,当太阳光与水平线成45°角时,测得该杆在斜坡上的影长BC为20m.求电线杆AB的高(精确到0.1m,参考数值:≈1.73,≈1.41). 4.如图,两座建筑物的水平距离BC=30 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°, 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm? 6.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.(1.414,CF结果精确到米) 7.如图,某居民小区有一栋居民楼,在该楼的前面32米处要再盖一栋30米的新楼,现需了解新楼对采光的影响,当冬季正午的阳光与水平线的夹角为37°时,求新楼的影子在居民楼上有多高?(参考数值:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75) 8.进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC的夹角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41). 9.图1是一台实物投影仪,图2是它的示意图,折线B﹣A﹣O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1).(1)如图2,∠ABC=70°,BC∥OE.①填空:∠BAO= °.②求投影探头的端点D到桌面OE的距离.(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求∠ABC的大小.(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60) 10.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?
0.中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习11(含答案)参考答案 一 、解答题1.解:设小明家到公路的距离AD的长度为x m.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x.在Rt△ACD中,∵∠ACD=30°,∴tan∠ACD=,即tan30°=,解得x=25(+1)≈68.3.2.解:由题意得,AH=10米,BC=10米,在Rt△ABC中,∠CAB=45°,∴AB=BC=10,在Rt△DBC中,∠CDB=30°,∴DB==10,∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米),∵2.7米<3米,∴该建筑物需要拆除.3.解:过点C作CD⊥AB交AB延长线于点D.在Rt△BCD中,BD=BC•sin∠BCD=20×sin30°=10,CD=BC•cos30°=20×=10,在Rt△ACD中,∵∠ACD=45°,∴∠DAC=∠ACD=45°,则AD=CD=10,∴AB=AD﹣BD=10﹣10=10(﹣1)≈10(1.73﹣1)=7.3(m),所以,电线杆AB的高约为7.3m. 4.解:延长CD,交AE于点E,则DE⊥AE,在Rt△AED中,AE=BC=30 m,∠EAD=30°,∴ED=AE·tan30°=10 m.在Rt△ABC中,∠BAC=30°,BC=30 m,∴AB=30 m.∴CD=EC-ED=AB-ED=30-10=20(m). 5.解:过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示. 在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠BAD=20cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2=20+17(cm).答:此时灯罩顶端C到桌面的高度CE是(20+17)cm.6.解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米. 7. 8.解:在Rt△ABC中,tanA=,则BC=ACtanA≈121×0.75=90.75,由题意得,CD=AC﹣AD=97.5,在Rt△ECD中,∠EDC=45°∴EC=CD=97.5,∴BE=EC﹣BC=6.75≈6.8(m),答:塔冠BE的高度约为6.8m. 9.解:(1)①过点A作AG∥BC,如图1,则∠BAG=∠ABC=70°,∵BC∥OE,∴AG∥OE,∴∠GAO=∠AOE=90°,∴∠BAO=90°+70°=160°,故答案为:160;②过点A作AF⊥BC于点F,如图2,则AF=AB•sin∠ABE=30sin70°≈28.2(cm),∴投影探头的端点D到桌面OE的距离为:AF+0A﹣CD=28.2+6.8﹣8=27(cm);(2)过点DE⊥OE于点H,过点B作BM⊥CD,与DC延长线相交于点M,过A作AF⊥BM于点F,如图3,则∠MBA=70°,AF=28.2cm,DH=6cm,BC=30cm,CD=8cm,∴CM=AF+AO﹣DH﹣CD=28.2+6.8﹣6﹣8=21(cm),∴sin∠MBC=,∴∠MBC=36.8°,∴∠ABC=∠ABM﹣∠MBC=33.2°. 10.【解答】解:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x.在Rt△BCD中,∵∠B=30°,∴BC===2x,∵小军的行走速度为米/秒.若小明与小军同时到达山顶C处,∴=,解得a=1米/秒.答:小明的行走速度是1米/秒.
相关试卷
这是一份中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习14(含答案),共8页。试卷主要包含了414,eq \r≈1,2=10,4 m等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习05(含答案),共8页。试卷主要包含了91,cs65°≈0,49海里,6×eq \f,3)≈113,4+113等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习04(含答案),共8页。试卷主要包含了80,sin37°≈0等内容,欢迎下载使用。