所属成套资源:中考数学三轮冲刺《函数实际问题》解答题冲刺练习(含答案)
中考数学三轮冲刺《函数实际问题》解答题冲刺练习04(含答案)
展开这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习04(含答案),共7页。试卷主要包含了5h或4等内容,欢迎下载使用。
中考数学三轮冲刺《函数实际问题》
解答题冲刺练习04
1. “和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.
(1)当0≤x≤10,求y关于x的函数解析式;
(2)求C点的坐标.
2.某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8 立方米,则每立方米按1元收费;若每户每月用水超过8立方米,则超过的部分每立方米按2元收费.某用户7月份用水x立方米,交纳水费y元.
(1)求y关于x的函数解析式,并写出x的取值范围;
(2)此用户要想每月水费不超过20元,那么每月的用水量最多不超过多少立方米?
3.某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8000元.请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多?
4.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.
(1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;
(2)当3≤x≤6时,求y与x之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
5.学校为奖励在艺术节系列活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.
(1)求甲、乙两种奖品的单价;
(2)学校计划购买甲、乙两种奖品共1800件,其中购买乙种奖品的件数不超过甲种奖品件数的2倍,学校分别购买甲、乙两种奖品多少件才能使总费用最小?最小费用是多少元?
6.为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(千瓦时)与应付电费y(元)的关系如图所示.
(1)根据图像,请分别求出当0≤x≤50和x>50时,y与x的函数关系式;
(2)请回答:当每月用电量不超过50千瓦时时的收费标准及当每月用电量超过50千瓦时时的收费标准.
7.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求x取何值时,花园面积S最大,并求出花园面积S的最大值.
8.某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.
(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.
(2)如果每套定价700元,软件公司售出多少套可以收回成本?
(3)某承包商与软件开发公司签订合同,买下公司生产的全部软件,但700元的单价要打折,并且公司仍然要负责安装调试.如果公司总共可生产该软件1500套,并且公司希望从这个软件项目上获得不少于280000元的利润,最多可以打几折?
9.某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:
| 每台甲型收割机的租金 | 每台乙型收割机的租金 |
A地区 | 1800元 | 1600元 |
B地区 | 1600元 | 1200元 |
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;
(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;
(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.
10.大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系,如下表所示:
若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款).
(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;
(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);
(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?
0.中考数学三轮冲刺《函数实际问题》解答题冲刺练习04(含答案)答案解析
一 、解答题
1.解:(1)当0≤x≤10,y关于x的图象是一条直线且过原点,
故设函数解析式为y=kx,将(10,50)代入,得k=5,
所以0≤x≤10时,y关于x的函数解析式是y=5x.
(2)当10<x≤30,y关于x的图象是直线且过点(10,50),(25,80),
故设函数解析式为y=k′x+b,
将(10,50),(25,80)代入得
解得k′=2,b=30,
故解析式为y=2x+30.
将x=30代入y=2x+30,得y=90,
所以a=90.
所以C点的坐标为(60,90).
2.解:(1)分两种情况:y=x(0≤x≤8),y=2x﹣8(x>8);
(2)14.
3.解:设商场投入资金x元,
如果本月初出售,到下月初可获利y1元,
则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x;
如果下月初出售,可获利y2元,则y2=25%x﹣8000=0.25x﹣8000
当y1=y2即0.21x=0.25x﹣8000时,x=200000
当y1>y2即0.21x>0.25x﹣8000时,x<200000
当y1<y2即0.21x<0.25x﹣8000时,x>200000
∴若商场投入资金20万元,两种销售方式获利相同;
若商场投入资金少于20万元,本月初出售获利较多;
若投入资金多于20万元,下月初出售获利较多.
4.解:(1)这批零件一共有270个,
甲机器每小时加工零件:(90﹣550)÷(3﹣1)=20(个),
乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);
故答案为:270;20;40;
(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,
把B(3,90),C(6,270)代入解析式,得
,解得,
∴y=60x﹣90(3≤x≤6);
(3)设甲价格x小时时,甲乙加工的零件个数相等,
①20x=30,解得x=15;
②50﹣20=30,
20x=30+40(x﹣3),解得x=4.5,
答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.
5.解:(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,
依题意,得:,解得:.
答:甲种奖品的单价为40元/件,乙种奖品的单价为30元/件.
(2)设购买甲种奖品m件,则购买乙种奖品(1800﹣m)件,设购买两种奖品的总费用为w,
∵购买乙种奖品的件数不超过甲种奖品件数的2倍,
∴1800﹣m≤2m,
∴m≥600.
依题意,得:w=40m+30(1800﹣m)=10m+54000,
∵10>0,
∴w随m值的增大而增大,
∴当学习购买600件甲种奖品、1200件乙种奖品时,总费用最小,最小费用是60000元.
6.解:(1)y=0.9x﹣20(x>50).
(2)当每月用电量不超过50千瓦时,收费标准是每千瓦时0.50元;
当每月用电量超过50千瓦时,收费标准是其中的50千瓦时每千瓦时0.5元,超过部分每千瓦时0.9元.
7.解:(1)∵AB=xm,则BC=(28﹣x)m,
∴x(28﹣x)=192,解得:x1=12,x2=16.
答:x的值为12m或16m;
(2)由题意可得出:
,解得:6≤x≤13.
又S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,
∴当x≤14时,S随x的增大而增大.
∴x=13时,S取到最大值为:S=﹣(13﹣14)2+196=195
答:x为13m时,花园面积S最大,最大面积为195m2.
8.解:(1)根据题意得:y=50000+200x.
(2)设软件公司售出x套软件能收回成本,700x=50000+200x,解得:x=100,
答:软件公司售出100套软件可以收回成本.
(3)设该软件按m折销售时可获利280000元,
由题意可得:(700×﹣200)×1500=280000+50000,解得:m=6.
答:公司最多可以打6折.
9.解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
(2)由题意可得,
200x+74000≥79600,得x≥28,
∴28≤x≤30,x为整数,
∴x=28、29、30,
∴有三种分配方案,
方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
理由:∵y=200x+74000中y随x的增大而增大,
∴当x=30时,y取得最大值,此时y=80000,
∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
10.解:(1)由表可知,y是关于x的一次函数,设y=kx+b,
将x=110,y=50;x=115,y=45分别代入,
得110k+b=50,115k+b=45,解得k=-1,b=160.
∴y=-x+160(0<x≤160);
(2)由已知可得50×110=50a+3×100+200,解得a=100.设每天的毛利润为W元,
则W=(x-100)(-x+160)-2×100-200
=-x2+260x-16 400
=-(x-130)2+500,
∴当x=130时,W取最大值500.
答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;
(3)设需t天才能还清集资款,则500t≥50 000+0.000 2×50 000t,
解得t≥102.
∵t为整数,
∴t的最小值为103天.
答:该店最少需要103天才能还清集资款.
相关试卷
这是一份中考数学三轮冲刺《锐角三角函数实际问题》解答题冲刺练习04(含答案),共8页。试卷主要包含了80,sin37°≈0等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习13(含答案),共8页。试卷主要包含了5=2,5,360),等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习10(含答案),共7页。试卷主要包含了8 m,6m,宽2,01m3),2,等内容,欢迎下载使用。