搜索
    上传资料 赚现金
    英语朗读宝

    (统考版)2023高考化学二轮专题复习 第二部分 高考填空题专项突破 题型4 化学实验综合探究题

    (统考版)2023高考化学二轮专题复习 第二部分 高考填空题专项突破 题型4 化学实验综合探究题第1页
    (统考版)2023高考化学二轮专题复习 第二部分 高考填空题专项突破 题型4 化学实验综合探究题第2页
    (统考版)2023高考化学二轮专题复习 第二部分 高考填空题专项突破 题型4 化学实验综合探究题第3页
    还剩42页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (统考版)2023高考化学二轮专题复习 第二部分 高考填空题专项突破 题型4 化学实验综合探究题

    展开

    这是一份(统考版)2023高考化学二轮专题复习 第二部分 高考填空题专项突破 题型4 化学实验综合探究题,共45页。试卷主要包含了4 nm、c=1,四种表示方法,常见错误防范,04×10-10)3NA等内容,欢迎下载使用。
    题型4 物质结构与性质(选考题)
    真题·考情
    全国卷
    1.[2022·全国乙卷][化学——选修3:物质结构与性质]
    卤素单质及其化合物在科研和工农业生产中有着广泛的应用。回答下列问题:
    (1)氟原子激发态的电子排布式有________,其中能量较高的是________。(填标号)
    a.1s22s22p43s1 b.1s22s22p43d2
    c.1s22s12p5 d.1s22s22p33p2
    (2)①一氯乙烯(C2H3Cl)分子中,C的一个______杂化轨道与Cl的3px轨道形成C—Cl________键,并且Cl的3pz轨道与C的2pz轨道形成3中心4电子的大π键()
    ②一氯乙烷(C2H5Cl)、一氯乙烯(C2H3Cl)、一氯乙炔(C2HCl)分子中,C—Cl键长的顺序是__________________________,理由:(ⅰ)C的杂化轨道中s成分越多,形成的C—Cl键越强;(ⅱ)__________________________。
    (3)卤化物CsICl2受热发生非氧化还原反应,生成无色晶体X和红棕色液体Y。X为________。解释X的熔点比Y高的原因
    ________________________________________________________________________
    ________________________________________________________________________。
    (4)α­AgI晶体中I-离子作体心立方堆积(如图所示),Ag+主要分布在由I-构成的四面体、八面体等空隙中。在电场作用下,Ag+不需要克服太大的阻力即可发生迁移。因此,α­AgI晶体在电池中可作为________。

    已知阿伏加德罗常数为NA,则α­AgI晶体的摩尔体积Vm=________ m3·mol-1(列出算式)。
    2.[2022·全国甲卷][化学——选修3:物质结构与性质]
    2008年北京奥运会的“水立方”,在2022年冬奥会上华丽转身为“冰立方”,实现了奥运场馆的再利用,其美丽的透光气囊材料由乙烯(CH2===CH2)与四氟乙烯(CF2===CF2)的共聚物(ETFE)制成。回答下列问题:
    (1)基态F原子的价电子排布图(轨道表示式)为________。
    (2)图a、b、c分别表示C、N、O和F的逐级电离能Ⅰ变化趋势(纵坐标的标度不同)。第一电离能的变化图是________(填标号),判断的根据是________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________;
    第三电离能的变化图是________(填标号)。

    (3)固态氟化氢中存在(HF)n形式,画出(HF)3的链状结构________。
    (4)CF2===CF2和ETFE分子中C的杂化轨道类型分别为________和________;聚四氟乙烯的化学稳定性高于聚乙烯,从化学键的角度解释原因________________________________________________________________________。
    (5)萤石(CaF2)是自然界中常见的含氟矿物,其晶胞结构如图所示,X代表的离子是________;若该立方晶胞参数为a pm,正负离子的核间距最小为________ pm。

    3.[2021·全国乙卷]过渡金属元素铬(Cr)是不锈钢的重要成分,在工农业生产和国防建设中有着广泛应用。回答下列问题:
    (1)对于基态Cr原子,下列叙述正确的是________(填标号)。
    A.轨道处于半充满时体系总能量低,核外电子排布应为[Ar] 3d54s1
    B.4s电子能量较高,总是在比3s电子离核更远的地方运动
    C.电负性比钾高,原子对键合电子的吸引力比钾大
    (2)三价铬离子能形成多种配位化合物。[Cr(NH3)3(H2O)2Cl]2+中提供电子对形成配位键的原子是________,中心离子的配位数为________。
    (3) [Cr(NH3)3(H2O)2Cl]2+中配体分子NH3、H2O以及分子PH3的空间结构和相应的键角如下图所示。

    PH3中P的杂化类型是________, NH3的沸点比PH3的________,原因是________________________________________________________________________。
    H2O的键角小于NH3的,分析原因__________________________________________
    ________________________________________________________________________。

    (4)在金属材料中添加AlCr2颗粒,可以增强材料的耐腐蚀性、硬度和机械性能。AlCr2具有体心四方结构,如图所示。处于顶角位置的是________原子。设Cr和Al原子半径分别为rCr和rAl,则金属原子空间占有率为________%(列出计算表达式)。
    4.[2021·全国甲卷]我国科学家研发的全球首套千吨级太阳能燃料合成项目被形象地称为“液态阳光“计划。该项目通过太阳能发电电解水制氢,再采用高选择性催化剂将二氧化碳加氢合成甲醇。回答下列问题:
    (1)太阳能电池板主要材料为单晶硅或多晶硅。Si的价电子层的电子排布式为________;单晶硅的晶体类型为________。SiCl4是生产高纯硅的前驱体,其中Si采取的杂化类型为________。SiCl4可发生水解反应,机理如下:

    含s、p、d轨道的杂化类型有:①dsp2、②sp3d、③sp3d2,中间体SiCl4(H2O)中Si采取的杂化类型为________(填标号)。
    (2)CO2分子中存在________个σ键和________个π键。
    (3)甲醇的沸点(64.7 ℃)介于水(100 ℃)和甲硫醇(CH3SH,7.6 ℃)之间,其原因是
    ________________________________________________________________________
    ________________________________________________________________________。


    (4)我国科学家发明了高选择性的二氧化碳加氢合成甲醇的催化剂,其组成为ZnO/ZrO2固溶体。四方ZrO2晶胞如右图所示。Zr4+离子在晶胞中的配位数是________,晶胞参数为a pm、a pm、c pm,该晶体密度为________g·cm-3(写出表达式)。在ZrO2中掺杂少量ZnO后形成的催化剂,化学式可表示为ZnxZr1-xOy,则y=________(用x表达)。
    5.[2020·全国卷Ⅰ]Goodenough等人因在锂离子电池及钴酸锂、磷酸铁锂等正极材料研究方面的卓越贡献而获得2019年诺贝尔化学奖。回答下列问题:
    (1)基态Fe2+与Fe3+离子中未成对的电子数之比为________。
    (2)Li及其周期表中相邻元素的第一电离能(I1)如表所示。I1(Li)>I1(Na), 原因是
    ________________________________________________________________________
    ________________________________________________________________________。
    I1(Be)>I1(B)>I1(Li),原因是
    ________________________________________________________________________
    ________________________________________________________________________。

    I1/(kJ·mol-1)
    Li
    520
    Be
    900
    B
    801
    Na
    496
    Mg
    738
    Al
    578
    (3)磷酸根离子的空间构型为________, 其中P的价层电子对数为________、杂化轨道类型为________。
    (4)LiFePO4的晶胞结构示意图如(a)所示。其中O围绕Fe和P分别形成正八面体和正四面体,它们通过共顶点、共棱形成空间链结构。每个晶胞中含有LiFePO4的单元数有________个。

    电池充电时,LiFePO4脱出部分Li+,形成,结构示意图如(b)所示,则x=________,n(Fe2+)∶n(Fe3+)=________。
    6.[2020·全国卷Ⅱ ]钙钛矿(CaTiO3)型化合物是一类可用于生产太阳能电池、传感器、固体电阻器等的功能材料。回答下列问题:
    (1)基态Ti原子的核外电子排布式为___________________________________。
    (2)Ti的四卤化物熔点如下表所示,TiF4熔点高于其他三种卤化物,自TiCl4至TiI4熔点依次升高,原因是____________________________________________________。

    化合物
    TiF4
    TiCl4
    TiBr4
    TiI4
    熔点/℃
    377
    -24.12
    38.3
    155
    (3)CaTiO3的晶胞如图(a)所示,其组成元素的电负性大小顺序是__________________;金属离子与氧离子间的作用力为__________________,Ca2+的配位数是__________。
    (4)一种立方钙钛矿结构的金属卤化物光电材料的组成为Pb2+、I-和有机碱离子,其晶胞如图(b)所示。其中Pb2+与图(a)中________的空间位置相同,有机碱中,N原子的杂化轨道类型是______;若晶胞参数为a nm,则晶体密度为______________g·cm-3(列出计算式)。

    (5)用上述金属卤化物光电材料制作的太阳能电池在使用过程中会产生单质铅和碘,降低了器件效率和使用寿命。我国科学家巧妙地在此材料中引入稀土铕(Eu)盐,提升了太阳能电池的效率和使用寿命,其作用原理如图(c)所示,用离子方程式表示该原理________________________、________________________。
    7.[2020·全国卷Ⅲ]氨硼烷(NH3BH3)含氢量高、热稳定性好,是一种具有潜力的固体储氢材料。回答下列问题:
    (1)H、B、N中,原子半径最大的是______。根据对角线规则,B的一些化学性质与元素________的相似。
    (2)NH3BH3分子中,N—B化学键称为________键,其电子对由________提供。氨硼烷在催化剂作用下水解释放氢气:
    +9H2

    在该反应中,B原子的杂化轨道类型由________变为________。
    (3)NH3BH3分子中,与N原子相连的H呈正电性(Hδ+),与B原子相连的H呈负电性(Hδ-),电负性大小顺序是________。与NH3BH3原子总数相等的等电子体是________(写分子式),其熔点比NH3BH3________(填“高”或“低”),原因是在NH3BH3分子之间,存在________________,也称“双氢键”。
    (4)研究发现,氨硼烷在低温高压条件下为正交晶系结构,晶胞参数分别为a pm、b pm、c pm,α=β=γ=90°。氨硼烷的2×2×2超晶胞结构如图所示。

    氨硼烷晶体的密度ρ=________________(列出计算式,设NA为阿伏加德罗常数的值)。


    省市卷
    1.[2022·广东卷]硒(Se)是人体必需微量元素之一,含硒化合物在材料和药物领域具有重要应用。自我国科学家发现聚集诱导发光(AIE)效应以来,AIE在发光材料、生物医学等领域引起广泛关注。一种含Se的新型AIE分子Ⅳ的合成路线如下:


    (1)Se与S同族,基态硒原子价电子排布式为________。
    (2)H2Se的沸点低于H2O,其原因是________。
    (3)关于Ⅰ~Ⅲ三种反应物,下列说法正确的有________。
    A.Ⅰ中仅有σ键
    B.Ⅰ中的Se-Se键为非极性共价键
    C.Ⅱ易溶于水
    D.Ⅱ中原子的杂化轨道类型只有sp与sp2
    E.Ⅰ~Ⅲ含有的元素中,O电负性最大
    (4)Ⅳ中具有孤对电子的原子有________。
    (5)硒的两种含氧酸的酸性强弱为H2SeO4________H2SeO3(填“>”或“”“B;Mg>Al;N>O;P>S。
    (2)应用
    ①判断元素金属性的强弱
    电离能越小,金属越容易失去电子,金属性越强;反之越弱。
    ②判断元素的化合价
    如果某元素的≫In则该元素的常见化合价为+n,如钠元素I2≫I1,所以钠元素的化合价为+1价。
    2.元素电负性的递变性
    (1)规律
    同周期元素,从左到右,电负性依次增大;同主族元素自上而下,电负性依次减小。
    (2)应用




    三、分子结构中的三个理论
    1.杂化轨道理论
    (1)基本观点:杂化轨道成键满足原子轨道最大重叠原理;杂化轨道形成的共价键更加牢固。
    (2)杂化轨道类型与分子构型的关系。
    杂化轨
    道类型
    杂化轨
    道数目
    分子构型
    实例
    sp
    2
    直线形
    CO2、BeCl2、HgCl2
    sp2
    3
    平面三角形
    BF3、BCl3、CH2O
    sp3
    4
    等性杂化:正四面体
    CH4、CCl4、
    不等性杂化:具体情况不同
    NH3(三角锥形)、H2S、H2O(V形)
    2.价层电子对互斥理论
    (1)基本观点:分子中的价电子对(包括成键电子对和孤电子对)由于相互排斥作用,尽可能趋向彼此远离。
    (2)价电子对数的计算
    价电子对数=成键电子对+中心原子的孤电子对数=

    (3)价层电子对互斥理论在判断分子构型中的应用。
    价层电子
    对数目 
    电子对的
    空间构型
    成键电
    子对数
    孤电子
    对数
    分子的空
    间构型
    实例
    2
    直线形
    2
    0
    直线形
    CO2、C2H2
    3
    三角形
    3
    0
    三角形
    BF3、SO3
    2
    1
    V形
    SnCl2、PbCl2
    4
    四面体
    4
    0
    正四
    面体
    CH4、、
    CCl4、
    3
    1
    三角
    锥形
    NH3、PH3
    2
    2
    V形
    H2O、H2S
    3.等电子原理
    (1)基本观点:原子总数相同、价电子总数相同的分子具有相似的化学键特征,具有许多相近的性质。
    (2)实例:、为等电子体,其中心原子均采用sp3杂化,离子构型均为正四面体形。
    四、共价键与分子间作用力
    1.共价键分类
    (1)

    (2)配位键:形成配位键的条件是成键原子一方(A)能够提供孤电子对,另一方(B)具有能够接受孤电子对的空轨道,可表示为A―→B。
    2.σ键和π键的判断方法
    共价单键全为σ键,双键中有一个σ键和一个π键,三键中有一个σ键和两个π键。
    3.三种微粒间作用

    范德华力
    氢键
    共价键
    作用微粒
    分子
    H与N、O、F
    原子
    强度比较
    共价健>氢键>范德华力
    影响因素
    组成和结构相似的物质,相对分子质量越大,范德华力越大
    形成氢键元素的电负性
    原子半径
    对性质
    的影响
    影响物质的熔、沸点、溶解度等物理性质
    分子间氢键使熔、沸点升高,溶解度增大
    键能越大,稳定性越强
    如:(1)Ge与C是同族元素,C原子之间可以形成双键、叁键,但Ge原子之间难以形成双键或三键。从原子结构角度分析,原因是
    ________________________________________________________________________
    ________________________________________________________________________。
    [答题模板]

    (2)比较下列锗卤化物的熔点和沸点,分析其变化规律及原因
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________。

    GeCl4
    GeBr4
    GeI4
    熔点/℃
    -49.5
    26
    146
    沸点/℃
    83.1
    186
    约400
    [答题模板]

    [答案] 
    (1)Ge原子半径大,原子间形成的σ键较长,p­p轨道肩并肩重叠程度很小或几乎不能重叠,难以形成π键
    (2)GeCl4、GeBr4、GeI4的熔、沸点依次增高。原因是分子结构相似,相对分子质量依次增大,分子间相互作用力逐渐增强
    五、配合物
    配合物
    的组成
    [中心离子(配体)n][外界]
    典型配合物
    Cu(NH3)4SO4
    Fe(SCN)3
    Ag(NH3)2OH
    中心离子
    Cu2+
    Fe3+
    Ag+
    中心离子
    结构特点
    一般是金属离子,特别是过渡金属离子,必须有空轨道
    配体
    NH3
    SCN-
    NH3
    配体结
    构特点
    分子或离子必须含有孤对电子(如NH3、H2O、CO、Cl、SCN-等)
    配位数(n)
    4
    3
    2
    外界


    OH-
    颜色
    深蓝色
    血红色
    无色
    配离子所
    含化学键
    配体通过配位键与中心离子结合
    配合物所
    含化学键
    配位键、离子键;配体或外界中可能还含有共价键
    配合物的
    常见性质
    属于离子化合物,多数能溶解、能电离,多数有颜色
    金属羰基
    配合物
    是过渡金属和一氧化碳配位形成的配合物,如四羰基镍[Ni(CO)4]。在许多有机化合物的合成反应中,金属羰基配合物常常作为这些反应的催化剂

    二茂铁的结构为一个铁原子处在两个平行的环戊二烯的环之间。在固体状态下,两个茂环相互错开成全错位构型,温度升高时则绕垂直轴相对转动。二茂铁的化学性质稳定,类似芳香族化合物
    六、晶胞的结构与计算
    1.晶胞中微粒数目的计算方法——均摊法

    熟记几种常见的晶胞结构及晶胞含有的粒子数目


    A.NaCl(含4个Na+,4个Cl-)
    B.干冰(含4个CO2)
    C.CaF2(含4个Ca2+,8个F-)
    D.金刚石(含8个C)
    E.体心立方(含2个原子)
    F.面心立方(含4个原子)
    2.晶胞各物理量的求算方法

    (2)晶体微粒与M、ρ之间的关系
    若1个晶胞中含有x个微粒,则1 mol晶胞中含有x mol微粒,其质量为xM g(M为微粒的相对原子质量);又1个晶胞的质量为ρa3 g(a3为晶胞的体积,a为晶胞边长或微粒间距离),则1 mol晶胞的质量为ρa3NA g,因此有xM=ρa3NA。
    3.原子分数坐标
    晶胞中任意一个原子的中心位置均可用3个不大于1的数在立体坐标系中表示出来,如位于晶胞原点(顶角)的原子的坐标为(0,0,0);位于晶胞体心的原子的坐标为;位于xOy面心的原子的坐标为;位于xOz面心的原子的坐标为;等等(如图所示)。

    如:(1)F-不仅可与Fe3+形成,还可以与Mg2+、K+形成一种立方晶系的离子晶体,此晶体应用于激光领域,结构如图所示。

    该晶体的化学式为
    ________________________________________________________________________
    ________________________________________________________________________。

    (2)NaH为________晶体,如图是NaH晶胞结构,则NaH晶体的配位数是________,若晶胞棱长为a,则Na原子间最小核间距为________。

    (3)金刚砂(SiC)的硬度为9.5,其晶胞结构如图所示,则金刚砂晶体类型为________,在SiC中,每个C原子周围最近的C原子数目为________个;若晶胞的边长为a pm,则金刚砂的密度表达式为________。
    [解析] (1)根据晶胞的结构可知,Mg2+、F-、K+分别位于顶点、棱心和体心处,根据均摊法可知,晶胞中含有的Mg2+、F-、K+个数分别是8×=1个、12×=3个、1个,所以该物质的化学式为KMgF3。
    (2)NaH为离子晶体,NaH晶体中每个钠离子周围有6个氢负离子,若晶胞棱长为a,则Na原子间最小核间距为。
    (3)金刚砂(SiC)的硬度为9.5,属于原子晶体;每个碳原子连接4个硅原子,每个硅原子又连接其它3个碳原子,所以每个碳原子周围最近的碳原子数目为3×4=12;该晶胞中C原子个数=8×+6×=4,Si原子个数为4,晶胞边长=a×10-10 cm,体积V=(a×10-10 cm)3,ρ== g·cm-3。
    [答案] (1)KMgF3
    (2)离子 6 
    (3)原子晶体 12 

    模考·预测
    1.约翰·古德伊纳夫、斯坦利·惠廷厄姆和吉野彰三位科学家,因在锂电池领域做出巨大贡献而获得诺贝尔化学奖。请回答下列问题:
    (1)LiCoO2、LiFePO4常用作锂离子电池的正极材料。基态Co原子核外电子排布式为________________,基态磷原子中,电子占据的最高能层符号为________;该能层能量最高的电子云在空间有________个伸展方向,原子轨道呈________形。
    )4]2-中Co2+的配位数为4,配体中N的杂化方式为________,该配离子中各元素的第一电离能由小到大的顺序为________(填元素符号),1 mol该配离子中含σ键数目为________NA。
    (3)MnCl2可与NH3反应生成[Mn(NH3)6]Cl2,新生成的化学键为________键。NH3分子的空间构型为________________,其中N原子的杂化轨道类型为________。
    (4)钴蓝晶体结构如图,该立方晶胞由4个Ⅰ型和4个Ⅱ型小立方体构成,其化学式为________,晶体中Al3+占据O2-形成的________(填“四面体空隙”或“八面体空隙”)。NA为阿伏加德罗常数的值,钴蓝晶体的密度为________________g·cm-3(列计算式)。

    2.工业上合成锂离子电池的正极材料LiFePO4的原理是2FePO4+Li2CO3+H2C2O42LiFePO4+H2O↑+3CO2↑。
    回答下列问题:
    (1)基态Li+的核外电子云轮廓图的形状为________。
    画出基态Li原子的电子排布图:________。
    (2)从核外电子排布分析,Fe3+比Fe2+稳定的原因是________________________________。
    (3)已知草酸的结构简式为,其中碳原子的杂化类型是________;9.0 g草酸中含σ键的数目为________。
    能与多种金属离子形成配离子,如、[Al(C2O4)3]3-、、[Ni(C2O4)3]4-等。中提供孤电子对的原子是____________,判断依据是________________________________________________________________________。
    的立体构型是________。
    (6)FeO晶胞的结构类似于NaCl晶胞,其中Fe2+构成面心立方结构如图所示。已知FeO晶胞的棱长为a cm,NA为阿伏加德罗常数的值。

    ①与O2-等距离且最近的Fe2+构成的空间结构是正八面体,该正八面体的边长为________cm。
    ②FeO晶体的密度为________g·cm-3(用含a、NA的代数式表示)。
    3.东晋《华阳国志·南中志》卷四中已有关于白铜的记载,云南镍白铜(铜镍合金)闻名中外,曾主要用于造币,亦可用于制作仿银饰品。回答下列问题:
    (1)镍元素基态原子的电子排布式为________________,3d能级上的未成对电子数为________。
    (2)硫酸镍溶于氨水形成[Ni(NH3)6]SO4蓝色溶液。
    ①[Ni(NH3)6]SO4中阴离子的立体构型是________。
    ②在[Ni(NH3)6]2+中Ni2+与NH3之间形成的化学键称为________,提供孤电子对的成键原子是________。
    ③氨的沸点________(填“高于”或“低于”)膦(PH3),原因是________________________;氨是________分子(填“极性”或“非极性”),中心原子的轨道杂化类型为________。
    (3)单质铜及镍都是由________键形成的晶体;元素铜与镍的第二电离能分别为:ICu=、INi=1 753 kJ·mol-1,ICu>INi的原因是
    ________________________________________________________________________
    ________________________________________________________________________。
    (4)某镍白铜合金的立方晶胞结构如图所示。

    ①晶胞中铜原子与镍原子的数量比为________。
    ②若合金的密度为d g·cm-3,晶胞参数a=________nm。
    4.同周期元素中卤族元素的非金属性最强,能形成许多具有强氧化性的物质,回答下列问题:
    (1)写出基态溴原子核外电子排布式________________,氟、氯、溴、氧四种元素中,电负性由大到小的顺序为________________。
    (2)卤素单质的熔点、沸点随着元素原子序数的递增而升高,其原因是
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________;
    卤素可形成众多的二元化合物:如OF2、S2Cl2、NF3、PCl3、SnCl2、CCl4等。则SnCl2的分子构型为______,OF2的中心原子杂化类型为________。
    (3)氯化铬酰(CrO2Cl2)是有机合成中常用的氧化剂或氯化剂,它是易溶于CS2、CCl4的液体,则其晶体类型最可能是________晶体,分子结构最可能是下列图Ⅰ中的________。

    (4)氯元素能形成多种含氧酸,已知常温下电离常数K(HClO)=3×10-8、K(HClO2)=1.1×10-2,试从结构上加以解释
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________。
    (5)氟化钙主要用作冶炼金属的助熔剂,其晶胞结构如图Ⅱ所示,则编号为①的微粒是____________(写具体的微粒符号)。








    题型4 物质结构与性质(选考题)
    真题·考情
    全国卷
    1.解析:(1)基态氟原子的核外电子排布式为1s22s22p5,有9个电子,排除b、c项;a项,相当于F原子的一个电子从2p能级跃迁到3s能级,属于激发态氟原子,正确;d项,相当于F原子的两个电子从2p能级跃迁到3p能级,属于激发态氟原子,正确;在两个激发态氟原子中,由于3p能级的能量高于3s能级,且d中发生跃迁的电子数目多于a,故d的能量较高。(2)①C2H3Cl分子中存在碳碳双键,C原子为sp2杂化,杂化轨道只能形成σ键,故在C2H3Cl分子中,C的一个sp2杂化轨道与Cl的3px轨道形成C—Cl σ键。②C2H5Cl分子中只存在σ键,C原子为sp3杂化;C2H3Cl分子中存在一个的大π键,C原子为sp2杂化;C2HCl分子中存在两个的大π键[1个是Cl(3pz)-C(2pz),1个是Cl(3py)-C(2py)],C原子为sp杂化。杂化轨道中s成分越多(sp3、sp2、sp杂化轨道中s成分依次增多),形成的C—Cl键越强;Cl参与形成的大π键越多,形成的C—Cl键越短,故C—Cl键长顺序为C2H5Cl>C2H3Cl>C2HCl。(3)由CsICl2受热发生非氧化还原反应知,CsICl2受热分解生成CsCl和ICl,故无色晶体X为CsCl,红棕色液体Y为ICl;由于CsCl是离子晶体,熔化时需要克服Cs+和Cl-之间的离子键,而ICl是分子晶体,熔化时只需要克服范德华力,离子键比范德华力强得多,故CsCl的熔点高于ICl。(4)在α­AgI晶体中,Ag+可以发生迁移,故α­AgI晶体在电池中可以作为固体离子导体。由于α­AgI晶体中I-作体心立方堆积,由“均摊法”知,1个晶胞中含有I-数目为8×+1=2,即1个晶胞中含有2个α­AgI,则α­AgI晶体的摩尔体积Vm=×(504×10-12 m)3·NA mol-1=。
    答案:(1)ad d
    (2)①sp2 σ ②C2H5Cl>C2H3Cl>C2HCl Cl参与形成的大π键越多,形成的C—Cl键越短
    (3)CsCl CsCl是离子晶体,熔化时需要克服Cs+和Cl-之间的离子键,而ICl是分子晶体,熔化时只需要克服范德华力
    (4)固体离子导体 ×(5.04×10-10)3NA
    2.解析:(1)基态F原子的价电子排布式为2s22p5,故其价电子排布图(轨道表示式)为(2)C、N、O、F均位于第二周期,原子半径逐渐减小,原子核对最外层电子的吸引能力增强,第一电离能逐渐增大,但N原子的价电子排布式为2s22p3,2p轨道是半充满稳定结构,第一电离能比O原子大,故选a;C原子失去2个电子后达到2s2全满稳定结构,再失去1个电子较难,故第三电离能比N原子大,故选b。(3)固态氟化氢分子间存在氢键,故(HF)3的链状结构为H—F…H—F…H—F。(4) CF2===CF2分子中C原子形成碳碳双键,故C原子为sp2杂化;ETFE是乙烯与四氟乙烯的共聚物,可表示为故在ETFE分子中碳原子为sp3杂化;由于F的电负性比H大,C—F键的键能比C—H键的大,故聚四氟乙烯比聚乙烯稳定。(5)X离子位于顶点和面心,根据均摊法知,X离子数目为8×+6×=4,Y离子位于体内,故Y离子数目为8,结合CaF2的化学式知,X代表的离子是Ca2+;根据晶胞结构图知,Ca2+与F-的最小核间距为正方体体对角线长度的,即正负离子的核间距最小为a pm。
    答案:(1)
    (2)a 同周期元素从左到右,第一电离能呈增大趋势,N原子的价电子排布式为2s22p3,2p轨道是半充满稳定结构,第一电离能比O原子大 b
    (3)H—F…H—F…H—F
    (4)sp2 sp3 F的电负性比H大,C—F键的键能比C—H键的大
    (5)Ca2+ a
    3.解析:(1)Cr是24号元素,基态Cr原子核外电子排布式为,3d和4s轨道均处于半充满状态,此时体系总能量低,A项正确;4s电子能量较高,但其并不总是在比3s电子离核更远的地方运动,B项错误;因为Cr原子半径小于K,故电负性比钾高,原子对键合电子的吸引力比钾大,C项正确。(2)形成配位键的原子价层必须存在孤电子对,故三种配体NH3、H2O、Cl-中提供孤电子对形成配位键的原子是N、O、Cl,[Cr(NH3)3(H2O)2Cl]2+中中心离子的配位数为3+2+1=6。(3)PH3中P原子的成键电子对数为3,孤电子对数为1,故价层电子对数是4,采用sp3杂化;NH3的沸点比PH3高,是因为NH3分子间存在氢键,PH3分子间只有范德华力;由于NH3中N原子含有1个孤电子对,而H2O中O原子含有2个孤电子对,孤电子对越多对成键电子对的斥力越大,因此H2O中的键角小于NH3中的键角。(4)由结构图可知,根据均摊法,该晶胞含有4个白球和2个黑球,则黑球代表Al原子,白球代表Cr原子,金属原子的总体积是),晶胞体积是a2c,故原子空间利用率是×100%。
    答案:(1)AC
    (2)N、O、Cl 6
    (3)sp3 高 NH3存在分子间氢键 NH3含有一对孤对电子,而H2O含有两对孤对电子。H2O中的孤对电子对成键电子对的排斥作用较大
    (4)Al ×100
    4.解析:本题以“液态阳光”计划为素材考查物质结构性质,具体考查原子结构与性质、分子结构与性质、化学键数、晶胞结构及晶体密度的计算等,意在考查考生分析问题和解决问题的能力。(1)基态硅原子M层有4个电子,分别填充于3s和3p能级轨道中,则基态硅原子价电子排布式为3s23p2。单质硅熔、沸点高,硬度大,是原子晶体。SiCl4的中心原子硅原子周围有4对成键电子对,则Si采取sp3杂化。由中间体SiCl4(H2O)的结构可知,Si原子周围有5对成键电子对,故该杂化轨道含1个s杂化轨道、3个p杂化轨道和1个d杂化轨道,则Si采取的杂化类型为sp3d。(2)CO2分子的结构为O===C===O,则1个CO2分子中含2个σ键和2个π键。(3)甲醇的结构简式是CH3OH,1个甲醇分子可形成1个分子间氢键,而1个H2O分子可形成2个分子间氢键,水中氢键比例比甲醇高,故水的沸点比甲醇高,甲硫醇中不存在氢键,其沸点最低。(4)以ZrO2晶胞结构的上面面心的Zr4+为研究对象,将晶体结构向上由1个晶胞延长为2个晶胞,可观察到与该Zr4+距离最近的有8个,则Zr4+的配位数为8。该晶胞中含8个,Zr4+个数为8×+6×=4(个),则1个晶胞的质量为 g,1个晶胞的体积为a2c×10-30 cm3,则该晶体的密度为 g·cm-3。该晶体中,Zr为+4价,Zn为+2价,O为-2价,由化合物中各元素化合价代数和为0可得,2x+4×(1-x)-2y=0,解得y=2-x。
    答案:(1)3s23p2 原子晶体(或共价晶体) sp3 ②
    (2)2 2
    (3)甲醇和水均能形成分子间氢键,而甲硫醇不能,且水比甲醇的氢键多
    (4)8  2-x
    5.解析:(1)根据构造原理可知基态Fe2+和Fe3+的价层电子排布式分别为3d6和3d5,其未成对电子数分别为4和5,即未成对电子数之比为。(2)Li和Na均为第ⅠA族元素,由于Na电子层数多,原子半径大,故Na比Li容易失去最外层电子,即I1(Li)>I1(Na)。Li、Be、B均为第二周期元素,随原子序数递增,第一电离能有增大的趋势,而Be的2s能级处于全充满状态,较难失去电子,故第一电离能Be比B大。的中心原子P的价层电子对数为4,孤电子对数为0,中心原子P为sp3杂化,故的空间构型为正四面体。(4)由题图可知,小白球表示锂原子,由图(a)知,每个晶胞中的锂原子数为8×+4×+4×=4,故一个晶胞中有4个LiFePO4单元。由图(b)知,Li1-xFePO4结构中,一个晶胞含有13/4个锂原子,此时锂原子、铁原子的个数比为13∶16,进而推出x=。设Li13Fe16(PO4)16中二价铁离子的个数为a,三价铁离子的个数为b,由2a+3b+13=48,a+b=16,得到a∶b=13∶3,即n(Fe2+)∶n(Fe3+)=13∶3。
    答案:(1)
    (2)Na与Li同族,Na电子层数多,原子半径大,易失电子
    Li、Be、B同周期,核电荷数依次增加。Be为1s22s2全满稳定结构,第一电离能最大。与Li相比,B核电荷数大,原子半径小,较难失去电子,第一电离能较大
    (3)正四面体 4 sp3
    (4)4  13∶3
    6.解析:(1)Ti是22号元素,所以基态Ti原子的核外电子排布式为1s22s22p63s23p63d24s2。(2)氟元素非金属性强,TiF4为离子化合物,熔点最高,TiCl4、TiBr4、TiI4为共价化合物,熔点较低,且TiCl4、TiBr4、TiI4结构相似,相对分子质量越大,分子间作用力越强,熔点越高。(3)元素的非金属性越强,电负性越大,所以Ca、Ti、O三种元素中,O电负性最大,Ca的金属性强于Ti,则Ti的电负性强于Ca;阴、阳离子间的作用力为离子键;距离Ca2+最近的为O2-,共有12个O2-与位于体心处的Ca2+距离相等且最近,故Ca2+的配位数为12。(4)距离Pb2+最近的是处于面心的I-,Pb2+的配位数为6,图(a)中Ti4+的配位数也为6,其与图(b)中Pb2+的空间位置相同;中,氮原子形成4个单键,其中有1个是配位键,N原子采取sp3杂化;根据均摊法,1个晶胞中含有I-的个数为6×=的个数为8×=1,Pb2+的个数为1,化学式为PbCH3NH3I3,摩尔质量为620 g·mol-1,一个晶胞的质量为g,体积为(a×10-7)3 cm3,则晶体密度为×1021 g·cm-3。(5)根据图(c)可知,箭头是由反应物指向生成物,则该过程中Pb和Eu3+反应生成Pb2+和Eu2+,Eu2+与I2反应生成Eu3+和I-。
    答案:(1)1s22s22p63s23p63d24s2
    (2)TiF4为离子化合物,熔点高,其他三种均为共价化合物,随相对分子质量的增大分子间作用力增大,熔点逐渐升高
    (3)O>Ti>Ca 离子键 12
    (4)Ti4+ sp3 ×1021
    (5)2Eu3++Pb===2Eu2++Pb2+ 2Eu2++I2===2Eu3++2I-
    7.解析:(1)根据同一周期从左到右主族元素的原子半径依次减小,可知H、B、N中原子半径最大的是B。元素周期表中B与Si(硅)处于对角线上,二者化学性质相似。(2)NH3BH3中N有孤对电子,B有空轨道,N和B形成配位键,电子对由N提供。NH3BH3中B形成四个σ键,为sp3杂化中B形成3个σ键,为sp2杂化。(3)电负性用来描述不同元素的原子对键合电子吸引力的大小。与N原子相连的H呈正电性,与B原子相连的H呈负电性,故电负性N>H>B。原子数相同、价电子总数相同的微粒互称为等电子体,与NH3BH3互为等电子体的分子为CH3CH3。带相反电荷的微粒能形成静电引力,NH3BH3分子间存在Hδ+与Hδ-的静电引力,也称为“双氢键”,“双氢键”能改变物质的熔沸点,而CH3CH3分子间不存在“双氢键”,熔沸点较低。(4)氨硼烷的相对分子质量为31,一个氨硼烷的2×2×2超晶胞中含有16个氨硼烷,该超晶胞的质量为(31×16/NA) g,体积为2a×10-10 cm×2b×10-10 cm×2c×10-10 cm=8abc×10-30 cm3,则氨硼烷晶体的密度为[]g·cm-3。
    答案:(1)B Si(硅) (2)配位 N sp3 sp2
    (3)N>H>B CH3CH3 低 Hδ+与Hδ-的静电引力
    (4)
    省市卷
    1.解析:(1)基态硫原子价电子排布式为3s23p4,Se与S同族,Se为第四周期元素,因此基态硒原子价电子排布式为4s24p4。
    (2)H2Se的沸点低于H2O,其原因是两者都是分子晶体,水存在分子间氢键,沸点高。
    (3)Ⅰ中有σ键,还有大π键,故A错误;Se-Se是同种元素,因此Ⅰ中的Se-Se键为非极性共价键,故B正确;烃都是难溶于水,因此Ⅱ难溶于水,故C错误;Ⅱ中苯环上的碳原子和碳碳双键上的碳原子杂化类型为sp2,碳碳三键上的碳原子杂化类型为sp,故D正确;根据同周期从左到右电负性逐渐增大,同主族从上到下电负性逐渐减小,因此Ⅰ~Ⅲ含有的元素中,O电负性最大,故E正确。
    (4)根据题中信息Ⅳ中O、Se都有孤对电子,碳、氢、硫都没有孤对电子。
    (5)根据非羟基氧越多,酸性越强,因此硒的两种含氧酸的酸性强弱为H2SeO4>H2SeO3。中Se价层电子对数为4+(6+2-2×4)=4,其立体构型为正四面体形。
    (6)①根据晶胞结构得到K有8个,有8×+6×=4,则X的化学式为K2SeBr6。②设X的最简式的式量为Mr,晶体密度为ρ g·cm-3,设晶胞参数为a nm,得到ρ===ρ g·cm-3,解得a=×107 nm,X中相邻K之间的最短距离为晶胞参数的一半即×107 nm。
    答案:(1)4s24p4
    (2)两者都是分子晶体,由于水存在分子间氢键,沸点高
    (3)BDE (4)O、Se
    (5)> 正四面体形
    (6)①K2SeBr6 ②××107
    2.解析:(1)①Se为34号元素,根据构造原理可写出基态Se原子的核外电子排布式为[Ar]3d104s24p4。②该物质结构对称,具有如图所示8种不同化学环境的C原子:。③SeO3中Se的价层电子对数为3,孤电子对数为中Se的价层电子对数为3,孤电子对数为=1,故SeO3和中Se原子分别为sp2和sp3杂化,则SeO3分子中键角大于中键角。(2)①由富马酸分子的结构模型可确定其结构简式为由单键均为σ键,双键有1个σ键和1个π键,知该分子中σ键和π键的数目比为11∶3。②富马酸亚铁中含C、H、O、Fe四种元素,由电负性递变规律可知,电负性由大到小的顺序为O>C>H >Fe。(3)①产物中N原子形成4个共价键,则其采取sp3杂化。(4)①分析晶胞在xz、yz、xy平面的投影图可知,占据顶点和体心位置的为K原子,故K原子个数为8×+1=2,每个竖直棱上有2个Se原子,体内有2个Se原子,故Se原子个数为8×+2=4,每个竖直面上有2个Fe原子,故Fe原子个数为8×=4,该物质的晶胞结构如图所示:

    其最简化学式为KFe2Se2。②以1号Fe原子为研究对象,2号和3号铁原子及其对称位置的2个Fe原子距离1号Fe原子最近,故Fe的配位数为4。③该晶胞的质量为g,体积为0.4×0.4×1.4×10-21 cm3,故该晶体的密度为×1021 g·cm-3。
    答案:(1)①3d104s24p4 ②8 ③> 前者中Se为sp2杂化、后者中Se为sp3杂化
    (2)①11∶3 ②O>C>H>Fe
    (3)①sp3 ②H2O
    (4)①KFe2Se2 ②4 ③×1021
    3.解析:(1)硫为16号元素,基态硫原子的价电子排布式为3s23p4。(2)H2O分子间能形成氢键,H2S、CH4分子间均不存在氢键,H2O的沸点大于H2S、CH4;随着相对分子质量增大,氢化物的沸点逐渐增大,则沸点:H2S>CH4,所以三者的沸点由高到低的顺序为H2O>H2S>CH4。(3)80Hg的原子结构示意图为,原子核外有6个电子层,所以汞位于元素周期表第六周期。(4)化合物Ⅰ中S原子价层电子对数均为4,采用sp3杂化,A正确;化合物Ⅱ中含C、H、O、S、Hg五种元素,其中非金属性最强的是O元素,故化合物Ⅱ中O元素的电负性最大,B错误;化合物Ⅲ中C原子价层电子对数均为4,采用sp3杂化,键角约为109°28′,C错误;化合物Ⅲ为有机钠盐,故Ⅲ中存在离子键和共价键,D正确;化合物Ⅳ中存在的S===O键和S—O键是两种不同的化学键,键能不同,E错误。(5)化合物Ⅰ与化合物Ⅲ相比,化合物Ⅰ中有一个—OH,而化合物Ⅲ中对应的是—SO3Na,—OH的亲水性没有—SO3Na中的离子键强,故水溶性较好的是化合物Ⅲ。(6)①题图b中上、下两个面的面心原子分别为Hg和Ge,晶胞结构不对称,不符合晶胞平移后重合的特性,因此不是晶胞单元。②由题图c可知,X的晶体中与Hg距离最近的Sb的数目为4;该晶胞中Hg原子数=4×+6×=4(个),Ge原子数=8×+4×+1=4(个),Sb原子数为8,故Hg、Ge、Sb粒子个数比为4∶4∶8=1∶1∶2。③该晶胞的组成为Hg4Ge4Sb8,由于最简式的式量为Mr,则晶胞的质量为 g,晶胞的体积为x2y×10-21 cm3,则晶体的密度为 g·cm-3= g·cm-3。
    答案:(1)3s23p4
    (2)H2O>H2S>CH4
    (3)六
    (4)AD
    (5)Ⅲ
    (6)①图b中上、下两个面的面心原子在上、下平移过程中不能重合 ②4 1∶1∶2 ③
    4.解析:(1)H、O、P、K四种元素各自所能形成的简单离子中P3-、K+的核外电子排布相同。(2)基态磷原子的价电子排布式为3s23p3,其中3s轨道中自旋磁量子数的代数和为0,3p轨道中3个电子自旋方向相同,所以代数和为+或-。(3)由题表中键能关系可知3倍的N—N键的键能小于N≡N键的键能,而3倍的P—P键的键能大于P≡P键的键能,所以氮以N2中的N≡N形式存在更稳定,磷以P4中的P—P键形式存在更稳定。(4)由KH2PO2为正盐,可知H3PO2中只含一个羟基氧,所以H3PO2的结构式为其中P的价层电子对数为5+×(5-1×3-2×2)=4,则P的杂化方式为sp3。(5)的原子数为5,价电子数为32,总电子数为50,则与电子总数相同的等电子体的分子为SiF4。(6)每相邻两个磷酸分子脱去一个水分子,所以n个磷酸分子形成环状结构会脱去n个水分子,则形成的多磷酸的分子式中氢原子数目为3n-2n=n,磷原子的数目为n,氧原子的数目为4n-n=3n,即多磷酸分子式为HnPnO3n,故多磷酸的酸根可写成。(7)①由题给KH2PO4晶体的四方晶胞图可知,每个晶胞中,K+个数为6×+4×=4(个),H2个数为8×+4×+1=4(个),则1个KH2PO4晶体的四方晶胞中有4个KH2PO4,晶体密度等于晶胞质量除以晶胞体积,其中晶胞体积为a2c×10-30 cm3,晶胞的质量为 g,所以晶体的密度为 g·cm-3。②由题图(a)可知,晶胞在x轴方向的投影图,应为B选项中的图。
    答案:(1)P3-、K+
    (2)+或-
    (3)3倍的N—N键的键能小于N≡N键的键能,而3倍的P—P键的键能大于P≡P键的键能
    (4) sp3
    (5)SiF4
    (6)
    (7)① ②B
    5.解析:(1)Sn为元素周期表中ⅣA族元素,最外层有4个电子,故SnCl4的中心原子Sn的价电子对数为4+=4,且均为成键电子对,故SnCl4的空间构型为正四面体形。由SnCl4常温常压下为液体的物理性质可知SnCl4符合分子晶体的特点,故其为分子晶体。(2)NH3中存在分子间氢键,导致其沸点比与N元素同主族的P、As元素的氢化物PH3、AsH3的沸点要高,而PH3、AsH3中均不存在分子间氢键,故影响PH3、AsH3沸点的因素为范德华力,相对分子质量越大,沸点越高,则沸点由高到低的顺序为NH3、AsH3、PH3。通常同主族元素随着原子序数的递增,气态氢化物的还原性逐渐增强,则还原性由强到弱的顺序是AsH3、PH3、NH3。同主族元素,随着原子序数的递增,电负性逐渐减弱,则其气态氢化物中的成键电子对逐渐远离中心原子,致使成键电子对的排斥力降低,键角逐渐减小,故键角由大到小的顺序是NH3、PH3、AsH3。(3)该螯合物中Cd2+与5个N原子、2个O原子形成化学键,其中与1个O原子形成的为共价键,另外的均为配位键,故1 mol该配合物中通过螯合作用形成6 mol配位键。该螯合物中无论是硝基中的N原子,还是中的N原子,还是六元环中的N原子,N均为sp2杂化,即N只有1种杂化方式。(4)由四方晶系CdSnAs2晶胞及原子的分数坐标可知,有4个Sn位于棱上,6个Sn位于面上,则属于一个晶胞的Sn的个数为4×1/4+6×1/2=4。与Cd(0,0,0)最近的Sn原子为如图所示的a、b两个Sn原子,a位置的Sn的分数坐标为(0.5,0,0.25),b位置的Sn的分数坐标为(0.5,0.5,0)。CdSnAs2晶体中Sn除与该晶胞中的2个As键合外,还与相邻晶胞中的2个As键合,故晶体中单个Sn与4个As键合。
    答案:(1)正四面体形 分子晶体
    (2)NH3、AsH3、PH3  AsH3、PH3、NH3 NH3、PH3、AsH3
    (3)6 1
    (4)4 (0.5,0,0.25)、(0.5,0.5,0) 4
    6.解析:本题考查物质结构与性质知识,考查考生接受、吸收、整合化学信息的能力,考查的化学学科核心素养是宏观辨识与微观探析。(1)在元素周期表中Fe、Co、Ni都是第四周期第Ⅷ族的元素;Fe为26号元素,其基态原子的电子排布式是1s22s22p63s23p63d64s2或[Ar]3d64s2。
    (2)根据CoO晶胞的结构,利用均摊法得出,1个CoO晶胞中有4个Co2+和4个O2-,故CoO晶体的密度为= g·cm-3= g·cm-3。因为Fe、Co、Ni的二价氧化物是离子化合物,Fe2+、Co2+、Ni2+半径依次减小,晶体的晶格能依次增大,熔点依次升高,故熔点顺序是NiO> CoO> FeO。(3)Fe、Co、Ni与Cl2反应时分别生成FeCl3、CoCl2、NiCl2,故氧化性强弱顺序是Co3+(或Ni3+)> Cl2>Fe3+;Co3+可以氧化Cl-生成Cl2,故有2Co(OH)3+6H++2Cl-===2Co2+ +6H2O+Cl2↑。(4)当w(H2SO4)大于63%时,Ni被腐蚀的速率随H2SO4浓度增大而逐渐降低,说明Ni表面生成了致密的氧化膜,阻止了内部的Ni被进一步氧化(是一种钝化现象);Ni与硫酸反应较慢,加入稀硝酸可以使Ni的氧化速率加快(生成NiO后被稀硫酸溶解生成NiSO4),但硝酸过量会使产物中存在Ni(NO3)2而导致纯度降低,为此,加入稀硝酸应采用少量多次的操作方法,反应的化学方程式是3Ni+3H2SO4+2HNO3===3NiSO4+2NO↑+4H2O或Ni+H2SO4+2HNO3===NiSO4+2NO2↑+2H2O。
    答案:(1)第四周期第Ⅷ族
    1s22s22p63s23p63d64s2或[Ar]3d64s2
    (2) NiO>CoO>FeO
    (3)CoCl3>Cl2>FeCl3 2Co(OH)3+6H++2Cl-===2Co2++Cl2↑+6H2O
    (4)随H2SO4质量分数增加,Ni表面逐渐形成致密氧化膜 少量多次 3Ni+3H2SO4+2HNO3===3NiSO4+2NO↑+4H2O或Ni+H2SO4+2HNO3===NiSO4+2NO2↑+2H2O
    题型·练透
    例1 解析:(3)①磷酸亚铁锂中,磷原子的杂化方式为sp3,HCHO中C原子的杂化方式为sp2,A项不选;中C原子的杂化方式为sp2,B项不选;C2H6中两个C原子的杂化方式均为sp3,C项选;苯中C原子的杂化方式均为sp2,D项不选。
    ②Ti的基态原子核外电子排布式为[Ar]3d24s2;[Ne]3s23p3达到半充满稳定结构,因此电离最外层一个电子所需能量最大。
    (4)根据TiS2的晶胞图,原子1的坐标为(0,0,0),原子2的坐标为(0,1,1),原子3的坐标为(),则原子4的坐标为();根据晶胞图可知,晶胞体积为V=a2b×10-30 cm3,则晶胞密度ρ== g·cm-3= g·cm-3。
    答案:(1)F>N>O (2)12 (3)①C ②[Ar]3d24s2 A (4)() 
    练1 解析:(1)N原子位于第二周期第ⅤA族,价电子是最外层电子,即电子排布图是
    (2)根据图(a),电子亲和能增大(除N外),同周期从左向右非金属性增强,得电子能力增强,因此同周期自左而右电子亲和能增大;氮元素的p能级达到半满状态,原子相对稳定,不易得到1个电子;
    (3)①根据图(b),阳离子是和中心原子N含有4个σ键,孤电子对数为=0,价层电子对数为4,杂化类型为sp3,空间构型为正四面体形,H3O+中心原子是O,含有3个σ键,孤电子对数为=1,价层电子对数为4,杂化类型为sp3,空间构型为三角锥型,因此相同之处为ABD,不同之处为C;②由题给图示可知,N与N之间形成5个N—N键,因此有5个σ键。中有5个氮原子参与形成大π键,每个N原子与其他2个N原子形成共价键,每个N原子还可以提供1个电子参与大π键的形成,加上得到的1个电子,共有6个电子参与形成大π键,因此中的大π键可表示为;③根据图(b)还有的氢键是:(H3O+)O—H…N) ()N—H…N);
    (4)根据密度的定义有:d=g·cm-3,解得y=。
    答案:(1)
    (2)同周期元素随核电荷数依次增大,原子半径逐渐变小,故结合一个电子释放出的能量依次增大 N原子的p能级处于半充满状态,具有稳定性,故不易结合一个电子
    (3)①ABD C ②5 
    ③(H3O+)O—H…N) ()N—H…N)
    (4)y=
    例2 解析:(1)每个a原子周围有4个a—a键,a的该种单质为原子晶体,a能与水反应生成b和f,则图B对应的物质为金刚石;该晶胞中的原子数为:8×+6×+4=8。(2)a为C,a、b、c和d分别为四种短周期元素的常见单质,则b为H2、f为CO;b与c反应生成H2O,则c为O2;b与d反应生成i,i的溶液为常见的酸,则d为Cl2,i为HCl;f与c反应生成g,f与d反应生成k,k与水反应生成g和i溶液(HCl水溶液),则g为CO2、k为COCl2;d中元素为Cl,Cl原子核外有17个电子,其电子排布式为:1s22s22p63s23p5。(3)图A中由两种元素组成的物质有f为CO、g为CO2、i为HCl、H2O,这四种物质常温下只有水是液态,其它都是气体,故沸点最高的是H2O,原因是H2O分子间形成氢键;H2O中O上的孤电子对为×(6-2×1)=2,σ键电子对数为2,价电子对数为4,故O采取sp3杂化,由于有两对孤电子对,故H2O的构型为V形(或角形)。(4)所有双原子分子有H2、O2、Cl2、HCl、CO,其中H、Cl电负性差值最大,因而极性最大。(5)k为COCl2;COCl2中C原子含有3个σ键、1个π键,C上没有孤电子对,故C原子采取sp2杂化;COCl2为平面三角形结构,分子中正负电中心不重合,COCl2为极性分子。
    答案:(1)金刚石 8 原子晶体
    (2)1s22s22p63s23p5 (3)H2O H2O分子间形成氢键 V形(或角形) sp3 (4)HCl (5)COCl2 sp2 极性
    练2 答案:(1)金属晶体 金属键 12
    (2)1s22s22p63s23p5 Ar HClO4 正四面体
    (3)①CuCl 或
    ②Cu+可与氨形成易溶于水的配位化合物(或配离子) 
    模考·预测
    1.解析:(1)Co为27号元素,Co原子核外有27个电子,根据核外电子排布规律可得其基态Co原子核外电子排布式;基态磷原子核外有三层电子,故最高能层符号为M,电子云在空间有3个伸展方向,原子轨道为哑铃形;中价层电子对数为=3,故为sp2杂化;一般情况下非金属性越强,第一电离能越大,但由于N原子中最外层为半充满状态,比较稳定,故第一电离能大于O,所以第一电离能由小到大的顺序为Co、O、N;一个中有3个σ键,配位键也为σ键,故σ键数目为3×4+4=16,则1 mol该配离子中含σ键数目为16NA;(3)MnCl2可与NH3反应生成[Mn(NH3)6]Cl2,该物质为配合物,因此新生成的化学键为配位键,NH3分子构型为三角锥形,其杂化方式为sp3杂化;(4)根据钴蓝晶体晶胞结构分析,一个晶胞中含有的Co、Al、O个数分别为:(4×)×2+4=8,4×4=16,8×4=32,所以化学式为CoAl2O4;根据结构观察,晶体中Al3+占据O2-形成的八面体空隙;该晶胞的体积为(2a×10-7)3 cm3,该晶胞的质量为 g=,所以密度为 g·cm-3。
    答案:(1)1s22s22p63s23p63d74s2或[Ar]3d74s2 M 3 哑铃 (2)sp2 Co、O、N 16 (3)配位 三角锥形 sp3 (4)CoAl2O4 八面体空隙 
    2.解析:(1)基态Li+的核外电子排布式为1s2,电子云轮廓图呈球形。基态Li原子的核外电子排布式为1s22s1,故其电子排布图为(2)基态Fe2+和Fe3+的价电子排布式分别为3d6、3d5,因Fe3+的3d能级为半充满结构,能量较低,故Fe3+比较稳定。(3)草酸中的每个C原子连接3个σ键,无孤电子对,故碳原子的杂化类型是sp2。由草酸的结构简式可知,1个H2C2O4分子含7个σ键,9.0 g草酸的物质的量为0.1 mol,故9.0 g草酸中含σ键的数目为0.7NA或0.7×6.02×1023。(4)由草酸的结构简式可知中C的价电子层没有孤电子对,O的价电子层有孤电子对,故氧可提供孤电子对与金属离子形成配位键。中P原子采取sp3杂化,有4对成键电子,没有孤电子对,故的立体构型是正四面体形。(6)①晶胞中O2-位于Fe2+所形成的正八面体的体心,该正八面体的边长是该晶胞的面对角线的一半,则为a cm。②观察题中晶胞图可知,1个晶胞中含Fe2+的数目为8×+6×=4,含O2-的数目为12×+1=4,故FeO晶体密度ρ=== g·cm-3= g·cm-3。
    答案:(1)球形 
    (2)基态Fe3+的3d能级为半充满稳定结构
    (3)sp2 0.7NA(或0.7×6.02×1023)
    (4)O C的价电子层中没有孤电子对
    (5)正四面体形 (6)①a ②
    3.解析:本题主要考查物质结构与性质,意在考查考生对原子、分子、晶体结构和性质的理解能力。
    (1)Ni元素原子核外有28个电子,电子排布式为1s22s22p63s23p63d84s2或[Ar]3d84s2。3d能级上有2个未成对电子。
    中S无孤电子对,立体构型为正四面体。为配离子,Ni2+与NH3之间为配位键。配体NH3中提供孤电子对的为N。③NH3分子间存在氢键,故沸点比PH3高。NH3中N有一个孤电子对,立体构型为三角锥形,因此NH3为极性分子,N的杂化轨道数为3+1=4,杂化类型为sp3。
    (3)单质铜及镍都是由金属键形成的晶体,Cu,Ni失去一个电子后电子排布式分别为[Ar]3d10、[Ar]3d84s1,铜的3d轨道全充满,达到稳定状态,所以Cu的第二电离能相对较大。
    (4)①Cu原子位于面心,个数为6×=3,Ni原子位于顶点,个数为8×=1,铜原子与镍原子的数量比为3∶1。②以该晶胞为研究对象,则g=,解得a=×107。
    答案:(1)1s22s22p63s23p63d84s2或[Ar]3d84s2 2
    (2)①正四面体 ②配位键 N ③高于 NH3分子间可形成氢键 极性 sp3
    (3)金属 铜失去的是全充满的3d10电子,镍失去的是4s1电子
    (4)①3∶1 ②×107
    4.解析:(1)由周期表中电负性递变规律并结合元素的性质可确定O、F、Cl、Br电负性大小顺序为F>O>Cl>Br。(2)卤素单质是分子晶体,分子间作用力随着相对分子质量的增大而增大,而相对分子质量随着原子序数的增大而增大。SnCl2中每个锡原子形成2个σ键,另外还有1对孤电子对,故中心原子锡为sp2杂化,分子为V形,同理分析知OF2的中心原子杂化类型为sp3。(3)由CrO2Cl2的溶解性及CCl4是非极性分子知,CrO2Cl2最可能是非极性分子,故其分子结构中的两个氯原子、两个氧原子处于对称位置,故其最可能的结构为a。(4)HClO、HClO2可表示为HOCl和HOClO,相应地氯元素化合价分别为+1价、+3价,正电性越高,导致Cl—O—H中O的电子更向Cl偏移,越易电离出H+,K值更大一些。(5)晶胞中,①代表的微粒个数为8×+6×=4,另一种微粒个数为8,其个数之比为1∶2,所以①代表Ca2+,化学式为CaF2。
    答案:(1)[Ar]3d104s24p5(或1s22s22p63s23p63d104s24p5) F>O>Cl>Br
    (2)卤素单质是分子晶体,分子间作用力随着相对分子质量的增大而增大,而相对分子质量随着原子序数的增大而增大 V形 sp3
    (3)分子 a
    (4)HClO、HClO2中氯元素化合价分别为+1价、+3价,正电性越高,导致Cl—O—H中O的电子更向Cl偏移,越易电离出H+,K值更大一些
    (5)Ca2+

    相关试卷

    统考版2024高考化学二轮专题复习第二部分高考填空题专项突破题型3化学实验综合探究题教师用书:

    这是一份统考版2024高考化学二轮专题复习第二部分高考填空题专项突破题型3化学实验综合探究题教师用书,共39页。

    统考版2023高考化学二轮专题复习第二部分高考填空题专项突破题型5有机化学基础鸭题:

    这是一份统考版2023高考化学二轮专题复习第二部分高考填空题专项突破题型5有机化学基础鸭题,共72页。试卷主要包含了常见限制条件与结构关系等内容,欢迎下载使用。

    统考版2023高考化学二轮专题复习第二部分高考填空题专项突破题型4化学实验综合探究题:

    这是一份统考版2023高考化学二轮专题复习第二部分高考填空题专项突破题型4化学实验综合探究题,共45页。试卷主要包含了4 nm、c=1,四种表示方法,常见错误防范,02×1023等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map