终身会员
搜索
    上传资料 赚现金

    湖北省荆荆襄宜四地七校2022-2023学年高二下学期期中联考数学试卷(含答案)

    立即下载
    加入资料篮
    湖北省荆荆襄宜四地七校2022-2023学年高二下学期期中联考数学试卷(含答案)第1页
    湖北省荆荆襄宜四地七校2022-2023学年高二下学期期中联考数学试卷(含答案)第2页
    湖北省荆荆襄宜四地七校2022-2023学年高二下学期期中联考数学试卷(含答案)第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省荆荆襄宜四地七校2022-2023学年高二下学期期中联考数学试卷(含答案)

    展开

    这是一份湖北省荆荆襄宜四地七校2022-2023学年高二下学期期中联考数学试卷(含答案),共15页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。


    湖北省荆荆襄宜四地七校2022-2023学年高二下学期期中联考数学试卷

    学校:___________姓名:___________班级:___________考号:___________


    一、选择题

    1已知函数,则(   )

    A.-1  B.5  C.4  D.3

    2若随机事件,(   )

    A.  B.  C.  D.

    3已知直线l为曲线在点处的切线,则点到直线l的距离为(   )

    A.  B.   C.  D.10

    4已知随机变量X的分布列如表,则X的均值等于(   )

    0

    1

    2

    3

    m

    A.  B. C.1   D.2

    5某医院需要从4名女医生和3名男医生中抽调3人参加社区的健康体检活动,则至少有1名男医生参加的概率为(   )

    A.  B.  C.  D.

    6e是自然对数的底数),,则a,b,c的大小关系为(   )

    A.  B. C. D.

    7已知数列为等差数列,其首项为1公差为2,数列为等比数列,其首项为1公比为2,设为数列的前项和,则当时,的取值可以是下面选项中的(   )

    A.9  B.10  C.11  D.12

    8若存在正实数,使得不等式成立(e是自然对数的底数),则a的最大值为(   )

    A.                B.                C.               D.

    二、多项选择题

    9《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑.如图,在阳马中,侧棱底面ABCD,则下列结论正确的有(   )

    A.四面体是鳖臑

    B.阳马的体积为

    C.,则         

    D.D到平面PAC的距离为

    10在平面直角坐标系xOy中,已知定点,动点P满足,记动点P的轨迹为曲线C,直线,则下列结论中正确的是(   )

    A.曲线C的方程为

    B.直线l与曲线C的位置关系无法确定 

    C.若直线l与曲线C相交,其弦长为4,则

    D.的最大值为3

    11关于函数,下列说法正确的是(   )

    A.上单调递增                     

    B.函数有且只有1个零点

    C.存在正实数k,使得恒成立 

    D.对任意两个正实数,若,则

    12已知抛物线的焦点为F,过F且斜率为k的直线l交抛物线于A,B两点,B在第一象限,过A,B分别作抛物线的切线,相交于点P,若BPx轴于点Q,则下列说法正确的有(   )

    A.P在抛物线的准线上          B. 

    C.                      D.,则的值为

    三、填空题

    13在等比数列中,_________.

    14的展开式中的系数是______(用数字作答).

    15设某芯片制造厂有甲、乙、丙三条生产线,生产规格的芯片,现有20块该规格的芯片,其中甲、乙、丙生产的芯片分别为6块、6块、8块,且甲、乙、丙生产该芯片的次品率依次为,,.现从这20块芯片中任取1块芯片,则取得的芯片是次品的概率为___________.

    16黎曼猜想由数学家波恩哈德∙黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数,我们经常从无穷级数的部分和入手.请你回答以下问题

    1_____;(其中表示不超过x的最大整数,如,,

    2)已知正项数列的前n项和为,且满足,则

    _________.(参考数据:,,

    四、解答题

    17已知函数e是自然对数的底数).

    1)若,求的极值;

    2)若上单调递增,求m的取值范围.

    18手机碎屏险,即手机碎屏意外保险,是一种随着智能手机的普及,应运而生的保险.为方便手机用户,某品牌手机厂商针对A,B两款手机推出碎屏险服务,保修期为1年,如果手机屏幕意外损坏,手机用户可以享受1次免费更换服务,两款手机的碎屏险费用和发生屏幕意外损坏的概率如下表:

     

    A

    B

    碎屏险费/

    a

    50

    屏幕意外损坏概率p

    0.05

    0.08

    1)某人分别为A,B款各一部手机购买了碎屏险,已知两部手机在保修期内屏幕意外损坏的概率分别为0.050.08,手机屏幕意外损坏相互独立.记两部手机在保修期内免费更换屏幕的次数一共为X,求X的分布列和数学期望.

    2)已知在该手机厂商在售出的A,B两款手机中,分别有24000部和10000部上了碎屏险,两款手机更换屏幕的成本分别为400元和600.若手机厂商计划在碎屏险服务上的业务收入不少于50万元,求A款手机的碎屏险费a最低应定为多少?(业务收入=碎屏险收入—屏幕更换成本)

    19如图,已知三棱柱中,四边形是菱形.

    1)求证:

    2)若,求二面角的正弦值.

    20已知数列的前n项和为,.

    1)求的值,并求数列的通项公式;

    2)若数列的前n项和为,证明:.

    21已知椭圆,离心率,左、右顶点与上顶点围成的三角形的面积为.

    1)求椭圆C的方程;

    2M,N,A,B为椭圆上异于椭圆右顶点P的四个不同的点,直线MN、直线AB均不与坐标轴垂直,直线MN过点且与直线AB垂直,,证明:直线MN和直线AB的交点在一个定圆上.

    22已知函数a,b是常数,e是自然对数的底数).

    1)当,时,求函数的最大值;

    2)当,

    证明:函数存在唯一的极值点.

    ,且,证明:.


    参考答案

    1答案:D

    解析:

    2答案:D

    解析:

         

    3答案:B

    解析:,切线,即,则点到直线l的距离为

    4答案:C

    解析:,得,则

    5答案:D

    解析:

    6答案:A

    解析:,得

    ,得,即,故

    7答案:A

    解析:

    时,

    8答案:C

    解析:

    ,则,得上单增

    ,则,得上单增,在

    上单减,则,故

    9答案:BCD  

    解析:A

    B对,

    C对,

    D对,

    ,得

    10答案:AD

    解析:A对,设动点,则,即

    B错,直线过定点,点D在圆C

    C错,圆心上,代入得.

    D对,

    11答案:ABD

    解析:A对,上单减,在上单增

    B对,设上单减,

    上有且只有一个零点.

    C错,,设,则

    上单减.时,

    无最小值,故不恒成立.

    D对,设,即

    上单

    减,,故

    12答案: ACD

    解析:A对,设点则有,得

    ,又,得

    则点,即,故点p在准线上

    B错,点p在以AB为直径的圆上,则,即

    C对,设点A,B在准线l上得射影分别是,得,即

    D对,由,得,则

       

    13答案: 3

    解析:,得

    14答案:35

    解析:

    15答案:0.07

    解析:

    16答案:11288

    解析:(1

    所以,所以

    2时,,解得,因为,所以

    时,,所以,即

    所以是以1为首项,1为公差的等差数列,

    所以,因为,所以,所以

    时,,即

    所以

    因为

    所以

    因为,,

    所以

    所以,即

    17答案:(1)有极大值,无极小值

    (2)

    解析:1,当时,

    ,得

    时,上单增

    时,上单减

    故当时,有极大值,无极小值.

    2上恒成立

    上恒成立,

    .

    18答案:(1) 0.13

    (2) 40

    解析:1X的可能取值为012

    X的分布列为

    X

    0

    1

    2

    P

    0.874

    0.122

    0.04

    故次数X的数学期望为0.13.

    2)依题意,可知AB款手机发生屏幕意外损坏分别有部,

    屏幕更换总成本为

    碎屏险总收入为

    业务收入为

    ,得

    A款手机的碎屏险费a最低应定为40.

    19答案:(1)见解析

    (2)

    解析:1)由四边形是平行四边形,,得四边形是矩形,

    ,又,则

    由四边形是菱形,得

    AB,得

    2)由(1)可知,,又,得面

    由四边形是菱形,,得是正三角形.

    BCAC的中点分别为OM,连OM,则.

    由面

    以点O为坐标原点,OM,OC,OB所在直线分别为x,y,z轴,建立空间直角坐标系,如下图所示

    ,,,,

    的一个法向量为

    设面的一个法向量为

    ,令,得

    设二面角的大小为

    故二面角的正弦值为.

    20答案:(1)

    (2)

    解析:1)当时,,又

    ,即

    时,

    ,得

    时,

    时,符合上式

    综上,得

    2

    ,得,即

    21答案:(1)

    (2)见解析

    解析:1)依题意,得,解得

    则椭圆.

    2)设直线,点

    ,消y,得

    ,且

    ,得,即

    时,直线过定点,不合题意,故舍去.

    时,直线过定点

    ,故直线ABMN的交点在以所连线段为直径的定圆上

    22答案:(1)有最大值

    (2)见解析

    解析:1)当时,

    得当时,上单增

    时,上单减 

    则当时,有最大值

    2)当时,

    上单减

    ,得,则

    由零点存在性定理可知,存在唯一使,即

    得当时,上单增

    时,上单减

    处取得极大值,即存在唯一的极值点.

    ②由①可知,,即

    ,且,得

    ,得

    两式相除,得

    由(1)可知,,即,则

    ,则

    上单减,则

    ,则

    成立. 证毕


     

    相关试卷

    2022-2023学年湖北省荆荆襄宜四地七校联考高一(下)期中数学试卷:

    这是一份2022-2023学年湖北省荆荆襄宜四地七校联考高一(下)期中数学试卷,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年湖北省荆荆襄宜四地七校高二下学期期中联考数学试题Word版:

    这是一份2022-2023学年湖北省荆荆襄宜四地七校高二下学期期中联考数学试题Word版,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省荆荆襄宜四地七校2022-2023学年高二数学下学期期中联考试卷(Word版附答案):

    这是一份湖北省荆荆襄宜四地七校2022-2023学年高二数学下学期期中联考试卷(Word版附答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map